ŒUVRES
COMPLÈTES
DE BUFFON.
TOME IX.
MINÉRAUX.
VI.
OEUVRES COMPLÈTES
DE BUFFON
AUGMENTÉES
PAR M. F. CUVIER,
MEMBRE DE L'INSTITUT.
(Académie des Sciences)
DE DEUX VOLUMES
supplémentaires
OFFRANT LA DESCRIPTION DES MAMMIFÈRES ET DES OISEAUX LES PLUS REMARQUABLES DÉCOUVERTS JUSQU'A CE JOUR,
et accompagnées
D'UN BEAU PORTRAIT DE BUFFON, ET DE 260 GRAVURES EN TAILLE-DOUCE, EXÉCUTÉES POUR CETTE ÉDITION PAR LES MEILLEURS ARTISTES.

A PARIS,
CHEZ F. D. PILLOT, ÉDITEUR.
RUE DE SEINE-SAINT-GERMAIN, N° 49;
SALMON, LIBRAIRE,
RUE CHRISTINE, N° 5, PRÈS CELLE DAUPHINE.

1850.
HISTOIRE

DES MINÉRAUX.

VI.
HISTOIRE
DES MINÉRAUX.

STALACTITES CALCAIRES.

Les stalactites des substances calcaires, comme celles des matières vitreuses, se présentent en concrétions opaques ou transparentes : les albâtres et les marbres de seconde formation sont les plus grandes masses de ces concrétions opaques ; les spaths, qui, comme les pierres calcaires, peuvent se réduire en chaux par l'action du feu, en sont les stalactites transparentes. La substance de ces spaths est composée, comme celle des cristaux vitreux, de lames triangulaires presque infiniment minces : mais la figure de ces lames triangulaires du spath diffère néanmoins de celle des lames triangulaires du cristal ; ce sont des triangles dont les côtés sont obliques, en sorte que ces lames triangulaires, qui ne s'unissent que par la tranche, forment des losanges et des rhombes; au lieu que quand ce sont des triangles rectangles, elles forment des carrés et des solides à angles droits. Cette obliquité dans la situation des lames se trouve constamment et généralement dans tous les spaths, et dépend, ce me sem-
ble, de la nature même des matières calcaires, qui ne sont jamais simples ni parfaitement homogènes, mais toujours composées de couches ou lames de différente densité; en sorte qu’entre chaque lame il se trouve une couche moins dense dont la puissance d’attraction, se combinant avec celle de la lame plus dense, produit un mouvement composé qui suit la diagonale, et rend oblique la position de toutes les lames et couches alternatives et successives, en sorte que tous les spaths calcaires, au lieu d’être cubiques ou parallélépipèdes rectangles, sont rhomboïdaux ou parallélépipèdes obliquangles, dans lesquels les faces parallèles et les angles opposés sont égaux : il est même nécessaire pour produire cette obliquité de position que les lames et les couches intermédiaires soient d’une densité fort différente, et l’on peut juger de cette différence par le rapport des deux réfractions. Toutes les matières transparentes qui, comme le diamant ou le verre, sont parfaitement homogènes, n’opèrent sur la lumière qu’une simple réfraction, tandis que toutes les matières transparentes qui sont composées de couches alternatives de différente densité produisent une double réfraction ; et lorsqu’il n’y a que peu de différence dans la densité de ces couches, les deux réfractions ne diffèrent que peu, comme dans le cristal de roche, dont les réfractions ne s’éloignent que d’un dix-neuvième, et dont par conséquent la densité des couches alternatives ne diffère que très peu, tandis que dans le spath appelé cristal d’Islande les deux réfractions, qui diffèrent entre elles de plus d’un tiers, nous démontrent que la différence de la densité respective des couches alternatives de ce spath
est six fois plus grande que dans les couches alternatives du cristal de roche. Il en est de même du gypse transparent, qui n’est qu’un spath calcaire imprégné d’acide vitriolique; sa double réfraction est, à la vérité, moindre que celle du cristal d’Islande, mais cependant plus forte que celle du cristal de roche, et l’on ne peut douter qu’il ne soit également compose de couches alternatives de différente densité: or ces couches, dont les densités ne sont pas fort différentes, et dont les réfractions, comme dans le cristal de roche, ne diffèrent que d’un dix-neuvième, ont aussi à très peu près la même puissance d’attraction, et dès lors le mouvement qui les unit est presque simple, ou si peu composé que les couches se superposent sans obliquité sensible les unes sur les autres; au lieu que quand les couches alternatives sont de densité très différente, et que leurs réfractions, comme dans le cristal d’Islande, diffèrent de plus d’un tiers, leur puissance d’attraction diffère en même raison; et ces deux attractions agissant à la fois, il en résulte un mouvement composé qui, s’exerçant dans la diagonale, produit l’obliquité des couches, et par conséquent celle des faces et des angles, dans ce cristal d’Islande ainsi que dans tous les autres spaths calcaires.

Et comme cette différence de densité se trouve plus ou moins grande dans les différents spaths calcaires, leur forme de cristallisation, quoique toujours oblique, ne laisse pas d’être sujette à des variétés qui ont été bien observées par M. le docteur Demeste: je me dispenserai de les rapporter ici parce que ces variétés ne me paroissent être que des formes accidentelles
dont on ne peut tirer aucun caractère réel et général; il nous suffira, pour juger de tous les spaths calcaires, d'examiner le spath d'Islande, dont la forme et les propriétés se retrouvent plus ou moins dans tous les autres spaths calcaires.

DU SPATH
APPELÉ CRISTAL D'ISLANDE.

Ce cristal n'est qu'un spath calcaire, qui fait effervescence avec les acides, et que le feu réduit en une chaux qui s'échauffe et bouillonne avec l'eau comme toutes les chaux des matières calcaires; on lui a donné le nom de cristal d'Islande, parce qu'il y en a des morceaux qui, quand ils sont polis, ont autant de transparence que le cristal de roche, et que c'est en Islande qu'il s'en est trouvé en plus grande quantité: mais on en trouve aussi en France, en Suisse, en Allemagne, à la Chine, et dans plusieurs autres contrées. Ce spath plus ou moins pur, et plus ou moins transparent, affecte toujours une forme rhomboïdale dont les angles opposés sont égaux et les faces parallèles; il est composé de lames minces, toutes appliquées les unes contre les autres, sous une même inclinaison, en sorte qu'il se fend facilement, suivant chacune de ces dimensions, et il se casse toujours obliquement et parallèlement à quelqu'une de ses faces; ses fragments sont semblables pour la forme, et ne diffèrent
que par la grandeur : ce spath est ordinairement blanc, et quelquefois coloré de jaune, d’orangé, de rouge, et d’autres couleurs.

C’est sur ce spath transparent qu’Érasme Bartholin a observé, le premier, la double réfraction de la lumière ; et peu de temps après, Huygens a reconnu le même effet dans le cristal de roche, dont la double réfraction est beaucoup moins apparente que celle du cristal d’Islande. Nous avertirons en passant qu’aucun de ces cristaux à double réfraction ne peut servir pour les lunettes d’approche ni pour les microscopes, parce qu’ils doublent tous les objets, et diminuent plus ou moins l’intensité de leur couleur. La lumière se partage en traversant ces cristaux, de manière qu’un peu plus de la moitié passe selon la loi ordinaire, et produit la première réfraction, et le reste de cette même lumière passe dans une autre direction, et produit la seconde réfraction, dans laquelle l’image de l’objet est moins colorée que dans l’image de la première. Cela m’a fait penser que le rapport des sinus d’incidence et de réfraction ne devoir pas être le même dans les...
deux réfractions, et j’ai reconnu par quelques expériences faites en 1742, avec un prisme de cristal d’Islande, que le rapport est, à la vérité, comme l’ont dit Bartholin et Huygens, de 5 à 5 pour la première réfraction, mais que ce rapport qu’ils n’ont pas déterminé pour la seconde réfraction, et qu’ils croyaient égal au premier, en diffère d’un septième, et n’est que de 5 à $5^{1/2}$, ou de 10 à 7, au lieu de 5 à 5 ou de 10 à 6, en sorte que cette seconde réfraction est d’un septième plus foible que la première.

Dans quelque sens que l’on regarde les objets à travers le cristal d’Islande, ils paraîtront toujours doubles, et les images de ces objets sont d’autant plus éloignées l’une de l’autre que l’épaisseur du cristal est plus grande. Ce dernier effet est le même dans le cristal de roche; mais le premier effet est différent, car il y a un sens dans le cristal de roche où la lumière passe sans se partager et ne subit pas une double réfraction, au lieu que dans le cristal d’Islande la double réfraction a lieu dans tous les sens. La cause de cette différence consiste en ce que les lames qui composent le cristal d’Islande se croisent verticalement, au lieu que les lames du cristal de roche sont toutes posées dans le même sens; et ce qu’on voit encore avec quelque surprise, c’est que cette séparation de la lumière qui ne se fait que dans un sens en traversant

1. La double réfraction du cristal de roche se fait dans le plan de sa base naturelle, dont les angles sont de soixante degrés: cette réfraction est plus ou moins forte, suivant la différente ouverture des angles, pourvu qu’il soit toujours dans le même sens de ses côtes naturels, et ce sens est celui suivant lequel ses faces sont inclinées l’une à l’autre; mais dans le sens opposé il n’y a qu’une seule réfraction.
le cristal de roche, et qui s'opère dans tous les sens en traversant le cristal d'Islande, ne se borne pas dans ce spath, non plus que dans les autres spaths calcaires, et même dans les gypses, à une double réfraction, et que souvent, au lieu de deux réfractions, il y en a trois, quatre, et même un nombre encore plus grand, selon que ces pierres transparentes sont plus ou moins composées de couches de densité différente; car tous les liquides transparents et tous les solides qui, comme le verre ou le diamant, sont d'une substance simple, homogène, et également dense, ne donnent qu'une seule réfraction ordinairement proportionnelle à leur densité, et qui n'est plus grande que dans les substances inflammables ou combustibles, telles que le diamant, l'esprit-de-vin, les huiles transparentes, etc.

Quoique j'aie fait plusieurs expériences sur les propriétés de ce spath d'Islande, je n'ai pu m'assurer du nombre de ses réfractions; elles m'ont quelquefois paru triples, quadruples, et même sextuples; et M. l'abbé de Rochon, savant physicien, de l'Académie, qui s'est occupé de cet objet, m'a assuré que certains cristaux d'Islande forment non seulement deux, trois, ou quatre spectres à la lumière solaire, mais quelquefois huit, dix, et même jusqu'à vingt et au delà: ces cristaux ou spaths calcaires sont donc composés d'auftant de couches de densité différente qu'il y a d'images produites par les diverses réfractions.

Et ce qui prouve encore que le spath d'Islande est composé de couches ou lames d'une densité très différente, c'est la grande force de séparation ou d'écar-
tement de la lumière, dont on peut juger par l'éten-
due des images ; l'un des spectres solaires de ce sapha
a trois pieds de longueur, tandis que l'autre n'en a
que deux ; cette différence d'un tiers est bien consi-
détable en comparaison de celle qui se trouve entre
les images produites par les deux réfractions du cristal
de roche, dont la longueur des spectres ne diffère
que d'un dix-neuvième : on doit donc croire, comme
nous l'avons déjà dit, que le cristal de roche est com-
posé de couches ou lames alternatives dont la densité
n'est pas fort différente, puisque leur puissance réfrac-
tive ne diffère que d'un dix-neuvième, et l'on voit au
contraire que le sapha d'Islande est composé de cou-
ches d'une densité très différente, puisque leur puis-
sance réfractive diffère de près d'un tiers.
Les affections et modifications que la lumière prend
et subit en pénétrant les corps transparents sont les
plus sûrs indices que nous puissions avoir de la struc-
ture intérieure de ces corps, de l'homogénéité plus ou
moins grande de leur substance, ainsi que des mélan-
ges dont souvent ils sont composés, et qui, quoique
très réels, ne sont nullement apparents, et ne pour-
roient même se découvrir par aucun autre moyen. Y
a-t-il en apparence rien de plus net, de plus uniforme-
mément composé, de plus régulièrement continu,
que le cristal de roche ? Cependant sa double réfrac-
tion nous démontre qu'il est composé de deux matiè-
res de différente densité, et nous avons déjà dit qu'en
examinant son poli, l'on pouvoit remarquer que cette
matière moins dense est en même temps moins dure
que l'autre : cependant on ne doit pas regarder ces
matières différentes comme entièrement hétérogènes

minéraux.
SPATH APPELÉ CRISTAL D’ISLANDE.

ou d’une autre essence, car il ne faut qu’une légère différence dans la densité de ces matières pour produire une double réfraction dans la lumière qui les traverse; par exemple, je conçois que dans la formation du spath d’Islande, dont les réfractions diffèrent d’un tiers, l’eau qui suinte par stillation détache d’abord de la pierre calcaire les molécules les plus ténues, et en forme une lame transparente qui produit la première réfraction; après quoi, l’eau chargée de particules plus grossières ou moins dissoutes de cette même pierre calcaire, forme une seconde lame qui s’applique sur la première; et comme la substance de cette seconde lame est moins compacte que celle de la première, elle produit une seconde réfraction dont les images sont d’autant plus faibles et plus éloignées de celles de la première, que la différence de densité est plus grande dans la matière des deux lames, qui, quoique toutes deux formées par une substance calcaire, diffèrent néanmoins par la densité, c’est-à-dire par la ténuité ou la grossièreté de leurs parties constituant. Il se forme donc, par les résidus successifs de la stillation de l’eau, des lames ou couches alternatives de matière plus ou moins dense; l’une des couches est pour ainsi dire le dépôt de ce que l’autre contient de plus grossier, et la masse totale du corps transparent est entièrement composée de ces diverses couches posées alternativement les unes auprès des autres.

Et comme ces couches de lames alternatives se reconnaissent au moyen de la double réfraction, non seulement dans les spaths calcaires et gypseux, mais aussi dans tous les cristaux vitreux, il paraît que le
procédé le plus général de la nature, pour la composition de ces pierres par la stillation des eaux, est de former des couches alternatives dont l’une paroit être le dépôt de ce que l’autre a de plus grossier, en sorte que la densité et la dureté de la première couche sont plus grandes que celles de la seconde; toutes les pierres transparentes calcaires ou vitreuses sont ainsi composées de couches alternatives de différente densité, et il n’y a que le diamant et les pierres précieuses qui, quoique formées comme les autres par l’intermédiaire de l’eau, ne sont pas composées de lames ou couches alternatives de différente densité, et sont par conséquent homogènes dans toutes leurs parties.

Lorsqu’on fait calciner au feu les spaths et les autres matières calcaires, elles laissent exhaler l’air et l’eau qu’elles contiennent, et perdent plus d’un tiers de leur poids en se convertissant en chaux; lorsqu’on les fait distiller en vaisseaux clos, elles donnent une grande quantité d’eau: cet élément entre donc et réside comme partie constitutive dans toutes les substances calcaires et dans la formation secondaire des spaths. Les eaux de stillation, selon qu’elles sont plus ou moins chargées de molécules calcaires, forment des couches plus ou moins denses, dont la force de réfraction est plus ou moins grande; mais comme il n’y a, dans les cristaux vitreux, qu’une très petite quantité d’eau en comparaison de celle qui réside dans les spaths calcaires, la différence entre leurs réfractions est très petite, et celle des spaths est très grande.

Pour terminer ce que nous avons à dire sur le spath ou cristal d’Islande, nous devons observer que, dans
les lieux où il se trouve, la surface exposée à l'action de l'air est toujours plus ou moins altérée, et qu'elle est communément brune ou noirâtre : mais cette décomposition ne pénètre pas dans l'intérieur de la pierre ; on enlève aisément, et même avec l'ongle, la première couche noire au dessous de laquelle ce spath est d'un blanc transparent. Nous remarquerons aussi que ce cristal devient électrique par le frottement, comme le cristal de roche et comme toutes les autres pierres transparentes ; ce qui démontre que la vertu électrique peut se donner également à toutes les matières transparentes, vitreuses, ou calcaires.

PERLES.

On peut regarder les perles comme le produit le plus immédiat de la substance coquilleuse, c'est-à-dire de la matière calcaire dans son état primitif ; car, cette matière calcaire ayant été formée originellement par le filtre organisé des animaux à coquille, on peut mettre les perles au rang des concrétions calcaires, puisqu'elles sont également produites par une sécrétion particulière d'une substance dont l'essence est la même que celle de la coquille, et qui n'en diffère en effet que par la texture et l'arrangement des parties constituant es. Les perles, comme les coquilles, se dissolvent dans les acides ; elles peuvent également se réduire en chaux qui bouillonne avec l'eau ; elles ont à très peu près la même densité, la même dureté, le même *orient*,
que la nacre intérieure et polie des coquilles, à laquelle elles adhèrent souvent. Leur production paraît être accidentelle : la plupart sont composées de couches concentriques autour d'un très petit noyau qui leur sert de centre, et qui souvent est d'une substance différente de celles des couches ; cependant il s'en faut bien qu'elles prennent toutes une forme régulière : les plus parfaits sont sphériques ; mais le plus grand nombre, surtout quand elles sont un peu grosses, se présentent en forme un peu aplatie d'un côté et plus convexe de l'autre, ou en ovale assez irrégulier ; il y a même des perles longues ; et leur formation, qui dépend en général de l'extravasation du suc coquillieux, dépend souvent d'une cause extérieure que M. Faujas de Saint-Fond a très bien observée, et que l'on peut démontrer aux yeux dans plusieurs coquilles du genre des huîtres. Voici la note que ce savant naturaliste a bien voulu me communiquer sur ce sujet.

« Deux sortes d'ennemis attaquent les coquilles à perles. L'un est un ver à tarière, d'une très petite espèce, qui pénètre dans la coquille par les bords, en ouvrant une petite tranchée longitudinale entre les diverses couches ou lames qui composent la coquille ; et cette tranchée, après s'être prolongée à un pouce et quelquefois jusqu'à dix-huit lignes de longueur, se replie sur elle-même et forme une seconde ligne parallèle qui n'est séparée de la première que par une cloison très mince de matière coquilléeuse. Cette cloison sépare les deux tranchées dans lesquelles le ver a fait sa route en allant et revenant, et on en voit l'entrée et la sortie au bord de la coquille. On peut insinuer de longues épingles dans chacun de ces
orifices, et la position parallèle de ces épingles démontre que les deux tranchées faites par le ver sont également parallèles; il y a seulement au bout de ces tranchées une petite portion circulaire qui forme le pli dans lequel le ver a commencé à changer de route pour retourner vers les bords de la coquille. Comme ces petits chemins couverts sont pratiqués dans la partie la plus voisine du têt intérieur, il se forme bientôt un épanchement du suc nacré, qui produit une protubérance dans cette partie: cette espèce de saillie peut être regardée comme une perle longitudinale adhérente à la nacre; et lorsque plusieurs de ces vers travaillent à côté les uns des autres, et qu'ils se réunissent à peu près au même endroit, il en résulte une espèce de loupe nacrée avec des protubérances irrégulières. Il existe au Cabinet du Roi une de ces loupes de perle: on y distingue plusieurs issues qui ont servi de passage à ces vers.

» Un autre animal beaucoup plus gros, et qui est de la classe des coquillages multivalves, attaque avec beaucoup plus de dommage les coquilles à perles: celui-ci est une pholade de l'espèce des dattes de mer. Je possède dans mon cabinet une huître de la côte de Guinée, percée par ces pholades qui existent encore en nature dans le talon de la coquille: ces pholades ont leur charnière formée en bec croisé.

» La pholade perçant quelquefois la coquille en entier, la matière de la nacre s'épanche dans l'ouverture, et y forme un noyau plus ou moins arrondi, qui sert à boucher le trou: quelquefois le noyau est adhérent, d'autres fois il est détaché.

» J'ai fait pêcher moi-même, au mois d'octobre
1784, dans le lac Tay, situé à l'extrémité de l'Écosse, un grand nombre de moules d'eau douce, dans lesquelles on trouve souvent de belles perles; et en ouvrant toutes celles qui avaient la coquille percée, je ne les ai jamais trouvées sans perles, tandis que celles qui étaient saines n'en avaient aucune : mais je n'ai jamais pu trouver des restes de l'animal qui attaque les moules du lac Tay, pour pouvoir déterminer à quelle classe il appartient.

Cette observation, qui a été faite probablement par d'autres que par moi, a donné peut-être l'idée à quelques personnes qui s'occupent de la pêche des perles, de percer les coquilles pour y produire des perles ; car j'ai vu au Muséum de Londres des coquilles avec des perles, percées par un petit fil de laiton rivé à l'extérieur, qui pénétrait jusqu'à la nacre dans des parties sur lesquelles il s'est formé des perles.

On voit par cette observation de M. Faujas de Saint-Fond, et par une note que M. Broussonnet, professeur à l'École vétérinaire, a bien voulu me donner à ce sujet 1, qu'il doit se former des perles dans les coquilles nacrées lorsqu'elles sont percées par des vers.

1. On voit à Londres des coquilles fluviales apportées de la Chine, sur lesquelles on voit des perles de différentes grosseurs; elles sont formées sur un morceau de fil de cuivre avec lequel on a percé la coquille, et qui est rivé en dehors. On ne trouve ordinairement qu'un seul morceau de fil de cuivre dans une coquille ; on en voit rarement deux dans la même. On rasé une petite place de la face interne des coquilles fluviales vivantes, en ayant le soin de les ouvrir avec la plus grande attention, pour ne point endommager l'animal ; on pose sur l'endroit de la nacre qu'on a rasé un très petit morceau sphérique de nacre ; cette petite boule, grosse comme du plomb à tirer, sert de noyau à la perle. On croit qu'on a fait des expériences à ce sujet en Finlande; et il parait qu'elles ont été répétées avec succès en Angle-
ou coquillages à tarière ; et il se peut qu'en général la production des perles tienne autant à cette cause extérieure qu'à la surabondance et l'extravasation du suc coquilleux, qui sans doute est fort rare dans le corps du coquillage, en sorte que la comparaison des perles aux bézoards des animaux n'a peut-être de rapport qu'à la texture de ces deux substances, et point du tout à la cause de leur formation.

La couleur des perles varie autant que leur figure ; et dans les perles blanches, qui sont les plus belles de toutes, le reflet apparent qu'on appelle l'eau ou l'orient de la perle est plus ou moins brillant, et ne luit pas également sur leur surface entière.

Et cette belle production, qu'on pourroit prendre pour un écart de la nature, est non seulement accidentelle, mais très particulière ; car, dans la multitude d'espèces d'animaux à coquille, on n'en connoit que quatre, les huîtres, les moules, les patelles, et les oreilles de mer, qui produisent des perles, et encore n'y a-t-il ordinairement que les grands individus qui dans ces espèces nous offrent cette production : on doit même distinguer deux sortes de perles en histoire naturelle, comme on les a séparées dans le commerce, où les perles de moules n'ont aucune valeur en comparaison des perles d'huîtres ; celles des moules sont communément plus grosses, mais presque toujours défectueuses, sans orient, brunes ou rougeâtres et de couleurs ternes ou brouillées. Ces moules habitent les eaux douces, et produisent des perles dans les étangs et les rivières, sous tous les climats, chauds, tempé-

(Nota communiquée par M. Broussonnet à M. de Buffon, 20 avril 1785.)
rés ou froids. Les huîtres, les patelles, et les oreilles de mer, au contraire, ne produisent des perles que dans les climats les plus chauds ; car dans la Méditerranée, qui nourrit de très grandes huîtres, non plus que dans les autres mers tempérées et froides, ces coquillages ne forment point de perles. La production des perles a donc besoin d'une dose de chaleur de plus : elles se trouvent très abondamment dans les mers chaudes du Japon, où certaines patelles produisent de très belles perles. Les oreilles de mer, qui ne se trouvent que dans les mers des climats méridionaux, en fournissent aussi : mais les huîtres sont l'espèce qui en fournit le plus.

On en trouve aux îles Philippines, à celle de Ceylan, et surtout dans les îles du golfe Persique. La mer qui baigne les côtes de l'Arabie du côté de Moka en fournit aussi ; et la baie du cap Comorin, dans la presqu'île occidentale de l'Inde, est l'endroit de la terre le plus fameux pour la recherche et l'abondance des bellesperles. Les Orientaux, et les commerçants d'Europe, ont établi en plusieurs endroits de l'Inde des troupes de pêcheurs, ou, pour mieux dire, de petites compagnies de plongeurs, qui, chargés d'une grosse pierre, se laissent aller au fond de la mer pour en détacher les coquillages au hasard, et les rapporter à ceux qui les paient assez pour leur faire courir le risque de leur vie. Les perles que l'on tire des mers chaudes de l'Asie méridionale sont les plus belles et les plus précieuses, et probablement les espèces de coquillages qui les produisent ne se trouvent que dans ces mers ; ou s'ils se trouvent ailleurs, dans des climats moins chauds, ils n'ont pas la même faculté, et n'y produi-
sent rien de semblable, et c'est peut-être parce que les vers à tarière qui percent ces coquilles n'existent pas dans les mers froides ou tempérées.

On trouve aussi d'assez belles perles dans les mers qui baignent les terres les plus chaudes de l'Amérique méridionale, et surtout près des côtes de Californie, du Pérou, et de Panama : mais elles sont moins parfaites et moins estimées que les perles orientales. Enfin on en a rencontré autour des îles de la mer du Sud ; et ce qui a paru digne de remarque, c'est qu'en général les vraies et belles perles ne sont produites que dans les climats chauds, autour des îles et près des continents, et toujours à une médiocre profondeur; ce qui semblerait indiquer qu'indépendamment de la chaleur du globe, celle du soleil serait nécessaire à cette production, comme à celle de toutes les autres pierres précieuses : mais peut-être ne doit-on l'attribuer qu'à l'existence des vers qui percent les coquilles, dont les espèces ne se trouvent probablement que dans les mers chaudes, et point du tout dans les régions froides et tempérées ; il faudrait donc un plus grand nombre d'observations pour prononcer sur les causes de cette belle production, qui peuvent dépendre de plusieurs accidents dont les effets n'ont pas été assez soigneusement observés.
Le nom de ces pierres vient probablement de ce que les premières qu'on a vues en France ont été apportées de Turquie : cependant ce n'est point en Turquie, mais en Perse, qu'elles se trouvent abondamment, et en deux endroits distants de quelques lieues l'un de l'autre, mais dans lesquels les turquoises ne sont pas de la même qualité. On a nommé turquoises de vieille roche les premières, qui sont d'une belle couleur bleue et plus dures que celles de la nouvelle roche, dont le bleu est pâle ou verdâtre. Il s'en trouve de même dans quelques autres contrées de l'Asie, où elles sont connues depuis plusieurs siècles ; et l'on doit croire que l'Asie n'est pas la seule partie du monde où peuvent se rencontrer ces pierres dans un état plus ou moins parfait. Quelques voyageurs ont parlé des turquoises de la Nouvelle-Espagne, et nos observateurs en ont reconnu dans les mines de Hongrie. Boèce de Boot dit aussi qu'il y en a en Bohême et en Silésie. J'ai cru devoir citer tous ces lieux où les turquoises se trouvent colorées par la nature, afin de les distinguer de celles qui ne prennent de la couleur que par l'action du feu : celles-ci sont beaucoup plus communes, et se trouvent même en France ; mais elles n'ont ni n'acquèrent jamais la belle couleur des premières. Le bleu qu'elles prennent au feu devient vert ou verdâtre avec le temps : ce sont pour ainsi dire des
pierres artificielles, au lieu que les turquoises naturelles et qui ont reçu leurs couleurs dans le sein de la terre les conservent à jamais, ou du moins très longtemps, et méritent d'être mises au rang des belles pierres opaques.

Leur origine est bien connue : ce sont les os, les défenses, les dents des animaux terrestres et marins, qui se convertissent en turquoises lorsqu'ils se trouvent à portée de recevoir, avec le suc pétrifiant, la teinture métallique qui leur donne la couleur; et comme le fonds de la substance des os est une matière calcaire, on doit les mettre, comme les perles, au nombre des produits de cette même matière.

Le premier auteur qui ait donné quelques indices sur l'origine des turquoises est Gui de La Brosse, mon premier et plus ancien prédécesseur au Jardin du Roi. Il écrivait en 1628; et en parlant de la licorne minérale, il la nomme la mère des turquoises. Cette licorne est sans doute la longue défense osseuse et dure du narval. Ces défenses, ainsi que les dents et les os de plusieurs autres animaux marins remarquables par leur forme, se trouvent en Languedoc, et ont été soumises dès ce temps à l'action du feu pour leur donner la couleur bleue; car, dans le sein de la terre, elles sont blanches ou jaunâtres, comme la pierre calcaire qui les environne et qui paroît les avoir pétrifiées.

On peut voir dans les Mémoires de l'Académie des Sciences, année 1715, les observations que M. de Réaumur a faites sur ces turquoises du Languedoc. MM. de l'Académie de Bordeaux ont vérifié, en 1719, les observations de Gui de la Brosse et de Réaumur;
et, plusieurs années après, M. Hill en a parlé dans son Commentaire sur Théophraste, prétendant que les observations de cet auteur grec ont précédé celles des naturalistes français. Il est vrai que Théophraste, après avoir parlé des pierres les plus précieuses, ajoute qu’il y en a encore quelques autres, telles que l’ivoire fossile, qui paroit marbré de noir et de blanc, et de saphir foncé : c’est là évidemment, dit M. Hill, les points noirs et bleuâtres qui forment la couleur des turquoises. Mais Théophraste ne dit pas qu’il faut chauffer cet ivoire fossile, pour que cette couleur noire et bleue se répande, et d’ailleurs il ne fait aucune mention des vraies turquoises, qui ne doivent leurs belles couleurs qu’à la nature.

On peut croire que le cuivre en dissolution, se mêlant au suc pétrifiant, donne aux os une couleur verte; et si l’alcali s’y trouve combiné, comme il l’est en effet dans la terre calcaire, le vert deviendra bleu: mais le fer dissous par l’acide vitriolique peut aussi donner ces mêmes couleurs. M. Mortimer, à l’occasion du Commentaire de M. Hill sur Théophraste, dit « qu’il ne nie pas que quelques morceaux d’os ou d’ivoire fossile, comme les appeloit, il y a deux mille ans, Théophraste, ne puissent répondre aux caractères qu’on assigne aux turquoises de la nouvelle roche; mais il croit que celles de la vieille sont de véritables pierres, ou des mines de cuivre dont la pureté surpasse celle des autres, et qui, plus constantes dans leur couleur, résistent à un feu qui réduiroit les os en chaux. C’est ce que prouve encore, selon lui, une grande turquoise de douze pouces de long, de cinq de large, et de deux d’épaisseur, qui a été montrée à
la Société royale de Londres : l'un des côtés paroit raboteux et inégal, comme s'il avait été détaché d'un rocher ; l'autre est parsemé d'élevures et de tubercules qui, de même que celles de l’hématite botryoïde, donnent à cette pierre la forme d'une grappe, et prouvent que le feu en a fondu la substance. » Je crois, avec M. Mortimer, que le fer a pu colorer les turquoise : mais ce métal ne fait pas le fonds de leur substance, comme celle des hématites ; et les turquoise de la vieille et de la nouvelle roche, les turquoise colorées par la nature, ou par notre art, ou par le feu des volcans, sont également plus ou moins imprégnées et pénétrées d'une teinture métallique. Et comme dans les substances osseuses, il s'en trouve de différentes textures et d'une plus ou moins grande dureté, que, par exemple, l’ivoire des défenses de l'éléphant, du morse, de l’hippopotame, et même du narval, sont beaucoup plus dures que les autres os, il doit se trouver et il se trouve en effet des turquoise beaucoup plus dures les unes que les autres. Le degré de pétrification qu’auront reçu ces os doit aussi contribuer à leur plus ou moins grande dureté. La teinture colorante sera même d’autant plus fixe dans ces os, qu’ils seront plus ou moins massifs et moins poreux : aussi les plus belles turquoise sont celles qui, par leur dureté, reçoivent un poli vif, et dont la couleur ne s’altère ni ne change avec le temps.

Les turquoise artificielles, c'est-à-dire celles auxquelles on donne la couleur par le moyen du feu, sont sujettes à perdre leur beau bleu ; elles deviennent vertes à mesure que l'alcali s'exhale ; et quelquefois
même elles perdent encore cette couleur verte, et deviennent blanches ou jaunâtres comme elles l’étoient avant d’avoir été chauffées.

Au reste, on doit présumer qu’il peut se former des turquoises dans tous les lieux où des os plus ou moins pétrifiés auront reçu la teinture métallique du fer ou du cuivre. Nous avons au Cabinet du Roi une main bien conservée, et qui paroît être celle d’une femme, dont les os sont convertis en turquoise. Cette main a été trouvée à Clamecy en Nivernois, et n’a point subi l’action du feu ; elle est même recouverte de la peau, à l’exception de la dernière phalange des doigts, des deux phalanges du pouce, des cinq os du métacarpe, et de l’os unciforme, qui sont découverts. Toutes ces parties osseuses sont d’une couleur bleue mêlée d’un vert plus ou moins foncé.

CORAIL.

Le corail est, comme l’on sait, de la même nature que les coquilles ; il est produit, ainsi que tous les autres madrépores, astroïtes, cerveaux de mer, etc., par le suintement du corps d’une multitude de petits animaux auxquels il sert de loge, et c’est dans ce genre la seule matière qui ait une certaine valeur. On le trouve en assez grande abondance autour des îles et le long des côtes, dans presque toutes les par-

ties du monde. L'île de Corse, qui appartient actuellement à la France, est environnée de rochers et de bas-fonds qui pourraient en fournir une très grande quantité, et le gouvernement ferait bien de ne pas négliger cette petite partie de commerce, qui deviendra très utile pour cette île. Je crois donc devoir publier ici l'extrait d'un Mémoire qui me fut adressé par le ministre en 1775 : ce Mémoire, qui contient de bonnes observations, est de M. Fraticelli, vice-consul de Naples en Sardaigne.

« Il y a environ douze ans, dit M. Fraticelli, que les pêcheurs ne fréquentent point ou fort peu les mers de Corse pour y faire cette pêche ; ils ne pouvoient point aller à la côte avec sûreté pendant la guerre des Corses, de sorte qu'ils l'avoient presque entièrement abandonnée : c'est seulement en 1771 qu'environ quarante Napolitains ou Génois la firent ; et, attendu les mauvais temps qui régnerent cette année, leur pêche ne fut pas abondante ; et quoique par cette raison elle ait été médiocre, ils trouvèrent cependant les rochers fort riches en corail : ils auront repris leur pêche en 1772, sans la crainte des bandits qui infestoyaient l'île. Ils passèrent donc en Sardaigne, où depuis quelques siècles ils font la pêche ainsi que plusieurs autres nations ; mais ils y ont fait jusqu'à présent une pêche médiocre, quoiqu'ils y trouvent toujours autant de corail qu'ils en trouvoient il y a vingt ans, parce que si on le pêche d'un côté, il naît d'un autre : au surplus, il est à présumer qu'il faut bien du temps avant que les filets qu'on jette une fois rencontrent de nouveau le même endroit, quoiqu'on pêche sur le même rocher. D'après les infor-
mations que j’ai prises, et les observations que j’ai toujours faites, je suis d’avis que le corail croît en peu d’années, et qu’en vieillissant il se gâte et devient piqué, et que sa tige même tombe, attendu que dans la pêche on prend plus de celui appelé ricaduto, c’est-à-dire tombé de la tige, et terraglio, c’est-à-dire ramassé par terre et presque pourri, que de toute autre espèce. Comme il y a plusieurs qualités de corail, le plus estimé est celui qui est le plus gros et de plus belle couleur; il faut recevoir pour passable celui qui, quoique gros, commence à être rongé par la vieillesse, et qui par conséquent a déjà perdu de sa couleur: si un pêcheur, pendant toute la saison de la pêche, prend une cinquantaine de livres de corail de cette première qualité, on peut dire qu’il a fait une bonne pêche, attendu qu’on le vend depuis sept jusqu’à neuf piastres la livre, c’est-à-dire depuis trente jusqu’à quarante francs. De la seconde qualité est celui qui, quoiqu’il ne soit pas bien gros, est cepen-dant entier et de belle couleur, sans être rongé; on en pêche peu de cette qualité, et on le vend huit à dix francs la livre. De la troisième qualité est tout celui qui est tombé de sa tige, et qui ayant perdu sa couleur est appelé sbianchito, blanchi: cette espèce est toujours très rongée; et c’est de cette qualité que les pêcheurs prennent communément un quintal, payé, par les marchands de Livourne, de six francs à deux livres. La quatrième qualité est de celui appelé terraglio, tombé de sa tige depuis très long-temps et presque pourri, que l’on donne à très bas prix. D’après ce détail, on voit que le corail se perd en vieillissant, et dépérit dans la mer sans aucun profit.
Depuis la mer de Bonifacio jusqu'au golfe de Va-
limo, il y a plusieurs rochers riches en corail et assez
peu éloignés de terre, mais aussi de peu d'étendue;
le plus considérable est celui appelé la secca di Tiz-
zano, écueil de Tizzano, éloigné de terre d'environ
trois lieues : d'après ce que les pêcheurs en disent,
il en a environ huit de circonférence. Ce rocher est
fort riche en corail, dont la plus grande partie se
trouve de la dernière qualité : on est d'avis que cela
provient de la trop grande étendue du rocher, qui
fait qu'il s'écoule plusieurs années avant que l'on ren-
contre le même endroit où l'on a pêché les années
précédentes ; en sorte que le corail, qui est fort vieux,
se gâte et devient, pour la plus grande partie, terra-
glio, et qu'il en reste peu de la première qualité. Il
y a aussi un autre rocher qui est appelé la Secca-
Grande, qui se trouve entre la Senara, petite île entre
la Sardaigne et la Corse : on prétend qu'il a onze
lieues de circonférence, et qu'il est beaucoup plus
riche en corail que celui de Tizzano ; mais il est moins
fréquenté, attendu son grand éloignement de l'île.
Son corail est aussi beaucoup inférieur à celui du pre-
mier rocher : des milliers de pêcheurs pourraient
faire leur pêche sur ces deux grands rochers sous-
marins, et il s'écoulerait bien des siècles avant de n'y
plus trouver de corail.

Les avantages que lesdits pêcheurs procuraient,
avant l'interdiction de la pêche, à la ville de Bonifa-
cio et à toute l'île étoient d'une très grande considé-
ration ; car, quoiqu'ils vivent misérablement, ils s'y
pourvoient de toutes les denrées nécessaires, chacun
en profite, et le plus grand avantage est pour le do-
maine royal, attendu les droits qu'on en retire pour l'importation des denrées de l'étranger.

» Comme on fait toujours une pêche médiocre en Sardaigne, quoique les pêcheurs y trouvent les denrées à très bon marché, si on venoit à ouvrir la pêche en Corse, et que le droit domanial, au moins pour les premières années, ne fût point augmenté, ils y viendroient tous, ce qui formeroit un objet de trois cents pêcheurs environ; et par ce commerce on verroit s'enrichir une très grande partie de l'île, d’autant qu’à présent les denrées y sont en si grande abondance, que le gouvernement a été obligé de permettre l'exportation des grains: alors tout resteroit dans l'île, et lui procureroit les plus grands avantages.

Le corail est aussi fort abondant dans certains endroits autour de la Sicile. M. Brydone décrit la manière dont on le pêche, dans les termes suivants. « La pêche du corail, dit-il, se fait surtout à Trapani: on y a inventé une machine qui est très propre à cet objet; ce n’est qu’une grande croix de bois, au centre de laquelle on attache une pierre dure et très pesante, capable de la faire descendre et maintenir au fond; on place des morceaux de petit filet à chaque membre de la croix, qu'on tient horizontalement en équilibre au moyen d’une corde, et qu'on laisse tomber dans l’eau; dès que les pêcheurs sentent qu’elle touche le fond, ils lient la corde aux bateaux, ils rament ensuite sur les couches de corail, la grosse pierre détache le corail des rochers, et il tombe sur-le-champ dans les filets. Depuis cette invention la pêche du corail est devenue une branche importante de commerce pour l'île de Sicile. »
Tous les corps organisés, surtout ceux qui sont solides, tels que les bois et les os, peuvent se pétrifier en recevant dans leurs pores les sucs calcaires ou vitreux; souvent même, à mesure que la substance animale ou végétale se détruit, la matière pierreuse en prend la place; en sorte que, sans changer de forme, ces bois et ces os se trouvent convertis en pierres calcaires, en marbres, en cailloux, en agates, etc. L'on reconnaît évidemment dans la plupart de ces pétrifications tous les traits de leur ancienne organisation, quoiqu'elles ne conservent aucune partie de leur première substance; la matière en a été détruite et remplacée successivement par le suc pétrifiant auquel leur texture, tant intérieure qu'extérieure, a servi de moule, en sorte que la forme domine ici sur la matière au point d'exister après elle. Cette opération de la nature est le grand moyen dont elle s'est servie, et dont elle se sert encore, pour conserver à jamais les empreintes des êtres périssables: c'est en effet par ces pétrifications que nous reconnaissions ses plus anciennes productions, et que nous avons une idée de ces espèces, maintenant anéanties, dont l'existence a précédé celle de tous les êtres actuellement vivants ou végétants; ce sont les seuls monuments des pre-
miers âges du monde : leur forme est une inscription authentique qu'il est aisé de lire en la comparant avec les formes des corps organisés du même genre ; et comme on ne leur trouve point d'individus analogues dans la nature vivante, on est forcé de rapporter l'existence de ces espèces actuellement perdues aux temps où la chaleur du globe étoit plus grande, et sans doute nécessaire à la vie et à la propagation de ces animaux et végétaux qui ne subsistent plus.

C'est surtout dans les coquillages et les poissons, premiers habitants du globe, que l'on peut compter un plus grand nombre d'espèces qui ne subsistent plus ; nous n'entreprendrons pas d'en donner ici l'énumération, qui, quoique longue, seroit encore incomplète : ce travail sur la vieille nature exigeroit seul plus de temps qu'il ne m'en reste à vivre, et je ne puis que le recommander à la postérité ; elle doit rechercher ces anciens titres de noblesse de la nature, avec d'autant plus de soin qu'on sera plus éloigné du temps de son origine. En les rassemblant et les comparant attentivement, on la verra plus grande et plus forte dans son printemps qu'elle ne l'a été dans les âges subséquents ; en suivant ses dégradations, on reconnaîtra les pertes qu'elle a faites, et l'on pourra déterminer encore quelques époques dans la succession des existences qui nous ont précédés.

Les pétrifications sont les monuments les mieux conservés, quoique les plus anciens de ces premiers âges : ceux que l'on connoît sous le nom de fossiles appartiennent à des temps subséquents ; ce sont les parties les plus solides, les plus dures, et particulièrement les dents des animaux, qui se sont conservées
PÉTRIFICATIONS ET FOSSILES.

intactes ou peu altérées dans le sein de la terre. Les dents de requin que l'on connaît sous le nom de glossopètes, celles d'hippopotame, les défenses d'éléphant, et autres ossements fossiles, sont rarement pétrifiés ; leur état est plutôt celui d'une décomposition plus ou moins avancée : l'ivoire de l'éléphant, du morse, de l'hippopotame, du narval, et tous les os dont en général le fonds de la substance est une terre calcaire, reprennent d'abord leur première nature, et se convertissent en une sorte de craie ; ce n'est qu'avec le temps, et souvent par des circonstances locales et particulières, qu'ils se pétrisent et reçoivent plus de dureté qu'ils n'en avaient naturellement. Les turquoises sont le plus bel exemple que nous puissions donner de ces pétrifications osseuses, qui néanmoins sont incomplètes ; car la substance de l'os n'y est pas entièrement détruite, et pleinement remplacée par le suc vitreux ou calcaire.

Aussi trouve-t-on les turquoises, ainsi que les autres os et les dents fossiles des animaux, dans les premières couches de la terre à une petite profondeur, tandis que les coquilles pétrifiées font souvent partie des derniers bancs au dessous de nos collines, et que ce n'est de même qu'à de grandes profondeurs que l'on voit, dans les schistes et les ardoises, des empreintes de poissons, de crustacés, et de végétaux, qui semblent nous indiquer que leur existence a précédé, même de fort loin, celle des animaux terrestres : néanmoins leurs ossements conservés dans le sein de la terre, quoique beaucoup moins anciens que les pétrifications des coquilles et des poissons, ne laissent pas de nous présenter des espèces d'animaux
quadrupèdes qui ne subsistent plus ; il ne faut, pour s'en convaincre, que comparer les énormes dents à pointes mousses dont j'ai donné la description et la figure 1, avec celle de nos plus grands animaux actuellement existants : on sera bientôt forcé d'avouer que l'animal d'une grandeur prodigueuse auquel ces dents appartenoient étoit d'une espèce colossale bien au dessus de celle de l'éléphant ; que de même les très grosses dents carrées que j'ai cru pouvoir comparer à celles de l'hippopotame sont encore des débris de corps démesurément gigantesques, dont nous n'avons ni le modèle exact, ni n'aurions pas même l'idée sans ces témoins aussi authentiques qu'irréprochables : ils nous démontrent non seulement l'existence passée d'espèces colossales, différentes de toutes les espèces actuellement subsistantes, mais encore la grandeur gigantesque des premiers pères de nos espèces actuelles ; les défenses d'éléphant de huit à dix pieds de longueur, et les grosses dents d'hippopotame dont nous avons parlé, prouvent assez que ces espèces majeures étoient anciennement trois ou quatre fois plus grandes, et que probablement leur force et leurs autres facultés étoient en proportion de leur volume.

Il en est des poissons et coquillages comme des animaux terrestres ; leurs débris nous démontrent l'excès de leur grandeur : existe-t-il en effet aucune espèce comparable à ces grandes volutes pétrifiées dont le diamètre est de plusieurs pieds, et le poids de plusieurs centaines de livres ? Ces coquillages d'une grandeur démesurée n'existent plus que dans le sein de la

terre, et encore n'y existent-ils qu'en représentation; la substance de l'animal a été détruite, et la forme de la coquille s'est conservée au moyen de la pétrification. Ces exemples suffisent pour nous donner une idée des forces de la jeune nature; animée d'un feu plus vif que celui de notre température actuelle, ses productions avoient plus de vie, leur développement étoit plus rapide, et leur extension plus grande: mais, à mesure que la terre s'est refroidie, la nature vivante s'est raccourcie dans ses dimensions; et non seulement les individus des espèces subsistantes se sont rapetissés, mais les premières espèces que la grande chaleur avoit produites, ne pouvant plus se maintenir, ont péri pour jamais. Et combien n'en périra-t-il pas d'autres dans la succession des temps, à mesure que ces trésors de feu diminueront par la déperdition de cette chaleur du globe qui sert de base à notre chaleur vitale, et sans laquelle tout être vivant devient cadavre, et toute substance organisée se réduit en matière brute!

Si nous considérons en particulier cette matière brute qui provient du détriment des corps organisés, l'imagination se trouve écrasée par le poids de son volume immense, et l'esprit plus qu'épouvanté par le temps prodigieux qu'on est forcé de supposer pour la succession des innombrables générations qui nous sont attestées par leurs débris et leur destruction. Les pétrifications qui ont conservé la forme des productions du vieil Océan ne font pas des unités sur des millions de ces mêmes corps marins qui ont été réduits en poudre, et dont les détritus accumulés par le mouvement des eaux ont formé la masse entière de...
de nos collines calcaires, sans compter encore toutes les petites masses pétrifiées ou minéralisées qui se trouvent dans les glaïses et dans la terre limoneuse : sera-t-il jamais possible de reconnaître la durée du temps employé à ces grandes constructions, et de celui qui s’est écoulé depuis la pétrification de ces échantillons de l’ancienne nature ? on ne peut qu’en assigner des limites assez indéterminées entre l’époque de l’occupation des eaux et celle de leur retraite ; époques dont j’ai sans doute trop resserré la durée pour pouvoir y placer la suite de tous les événements qui paraissent exiger un plus grand emprunt de temps, et qui me sollicitaient d’admettre plusieurs milliers d’années de plus entre les limites de ces deux époques.

L’un de ces plus grands événements est l’abaissement des mers, qui, du sommet de nos montagnes, se sont peu à peu déprimées au niveau de nos plus basses terres. L’une des principales causes de cette dépression des eaux est, comme nous l’avons dit, l’affaissement successif des boursouflures cavernueuses formées par le feu primitif dans les premières couches du globe, dont l’eau aura percé les voûtes et occupé le vide ; mais une seconde cause peut-être plus efficace, quoique moins apparente, et que je dois rappeler ici comme dépendante de la formation des corps marins, c’est la consommation réelle de l’immense quantité d’eau qui est entrée et qui chaque jour entre encore dans la composition de ces corps pierreux. On peut démontrer cette présence de l’eau dans toutes les matières calcaires ; elle y réside en si grande quantité qu’elle en constitue souvent plus d’un quart
de la masse; et cette eau, incessamment absorbée par les générations successives des coquillages et autres animaux du même genre, s'est conservée dans leurs dépouilles, en sorte que toutes nos montagnes et collines calcaires sont réellement composées de plus d'un quart d'eau. Ainsi le volume apparent de cet élément, c'est-à-dire la hauteur des eaux, a diminué en proportion du quart de la masse de toutes les montagnes calcaires, puisque la quantité réelle de l'eau a souffert ce déchet par son incorporation dans toute matière coquilleuse au moment de sa formation; et plus les coquillages et autres corps marins du même genre se multiplieront, plus la quantité de l'eau diminuera, et plus les mers s'abaisseront. Ces corps de substance coquilleuse et calcaire sont en effet l'intermédiaire et le grand moyen que la nature emploie pour convertir le liquide en solide : l'air et l'eau que ces corps ont absorbés dans leur formation et leur accroissement y sont incarcérés et résidants à jamais; le feu seul peut les dégager en réduisant la pierre en chaux, de sorte que, pour rendre à la mer toute l'eau qu'elle a perdue par la production des substances coquilleuses, il faudroit supposer un incendie général, un second état d'incandescence du globe, dans lequel toute la matière calcaire laisserait exhaler cet air fixe et cette eau qui font une si grande partie de sa substance.

La quantité réelle de l'eau des mers a donc diminué à mesure que les animaux à coquilles se sont multipliés; et son volume apparent, déjà réduit par cette première cause, a dû nécessairement se déprimer aussi par l'affaissement des cavernes, qui rece-
vant les eaux dans leur profondeur en ont successivement diminué la hauteur; et cette dépression des mers augmentera de siècle en siècle, tant que la terre éprouvera des secousses et des affaissements intérieurs, et à mesure aussi qu'il se formera de nouvelle matière calcaire par la multiplication de ces animaux marins revêtus de matière coquilleuse : leur nombre est si grand, leur pullulation si prompte, si abondante, et leurs dépouilles si volumineuses, qu'elles nous préparent au fond de la mer de nouveaux continents, surmontés de collines calcaires, que les eaux laisseront à découvert pour la postérité, comme elles nous ont laissé ceux que nous habitons.

Toute la matière calcaire ayant été primitivement formée dans l'eau, il n'est pas surprenant qu'elle en contienne une grande quantité : toutes les matières vitreuses au contraire, qui ont été produites par le feu, n'en contiennent point du tout; et néanmoins c'est par l'intermédiaire de l'eau que s'opèrent également les concrétions secondaires et les pétrifications vitreuses et calcaires : les coquilles, les oursins, les bois, convertis en cailloux, en agates, ne doivent ce changement qu'à l'infiltration d'une eau chargée du suc vitreux, lequel prend la place de leur première substance à mesure qu'elle se détruit. Ces pétrifications vitreuses, quoique assez communes, le sont cependant beaucoup moins que les pétrifications calcaires; mais souvent elles sont plus parfaites, et présentent encore plus exactement la forme tant extérieure qu'intérieure des corps, telle qu'elle étoit avant la pétrification : cette matière vitreuse, plus dure que la calcaire, résiste mieux aux chocs, aux frottements des
autres corps, ainsi qu'à l'action des sels de la terre, et à toutes les causes qui peuvent alterer, briser, et réduire en poudre les pétrifications calcaires.

Une troisième sorte de pétrification qui se fait de même par le moyen de l'eau, et qu'on peut regarder comme une minéralisation, se présente assez souvent dans les bois devenus pyriteux, et sur les coquilles recouvertes et quelquefois pénétrées de l'eau chargée des parties ferrugineuses que contenoient les pyrites : ces particules métalliques prennent peu à peu la place de la substance du bois qui se détruit ; et, sans en alterer la forme, elles le changent en mines de fer ou de cuivre. Les poissons dans les ardoises, les coquilles, et particulièremen les cornes d'ammon, dans les glaises, sont souvent recouverts d'un enduit pyriteux qui présente les plus belles couleurs ; c'est à la décomposition des pyrites contenues dans les argiles et les schistes qu'on doit rapporter cette sorte de minéralisation, qui s'opère de la même manière et par les mêmes moyens que la pétrification calcaire ou vitreuse.

Lorsque l'eau chargée de ces particules calcaires, vitreuses, ou métalliques, ne les a pas réduites en molécules assez ténues pour pénétrer dans l'intérieur des corps organisés, elles ne peuvent que s'attacher à leur surface, et les envelopper d'une incrustation plus ou moins épaisse : les eaux qui découlent des montagnes et collines calcaires forment, pour la plupart, des incrustations dans leurs tuyaux de conduite, et autour des racines d'arbres et autres corps qui réside nt sans mouvement dans l'étendue de leur cours ; et souvent ces corps incrustés ne sont pas pétrifiés : il faut, pour opérer la pétrification, non seulement
plus de temps, mais plus d’atténuation dans la matière, dont les molécules ne peuvent entrer dans l’intérieur des corps, et se substituer à leur première substance, que quand elles sont dissoutes et réduites à la plus grande ténuité. Par exemple, ces belles pierres nouvellement découvertes, et auxquelles on a donné le nom impropre de marbres opalins, sont plutôt des incrustations ou des concrétions que des pétrifications, puisqu’on y voit des fragments de bur-gaus et de moules de Magellan avec leurs couleurs : ces coquilles n’étoient donc pas dissoutes lorsqu’elles sont entrées dans ces marbres ; elles n’étoient que brisées en petites parcelles qui se sont mêlées avec la poudre calcaire dont ils sont composés.

Le suc vitreux, c’est-à-dire l’eau chargée de particules vitreuses, forme rarement des incrustations, même sur les matières qui lui sont analogues ; l’émail quartzeux qui revêt certains blocs de grès est un exemple de ces incrustations : mais d’ordinaire les molécules du suc vitreux sont assez atténuées, assez dissoutes, pour pénétrer l’intérieur des corps et prendre la place de leur substance à mesure qu’elle se détruit ; c’est là le vrai caractère qui distingue la pétirification, tant de l’incrustation, qui n’est qu’un revêtement, que de la concrétion, qui n’est qu’une agrégation de parties plus ou moins fines ou grossières. Les matières calcaires et métalliques forment au contraire beaucoup plus de concrétions et d’incrustations que de pétirifications ou minéralisations, parce que l’eau les détache en moins de temps et les transporte en plus grosses parties que celles de la matière vitreuse, qu’elle ne peut attaquer et dissoudre que par une action lente
et constante, attendu que cette matière, par sa duréte, lui résiste plus que les substances calcaires ou métalliques.

Il y a peu d’eaux qui soient absolument pures; la plupart sont chargées d’une certaine quantité de parties calcaires, gypseuses, vitreuses, ou métalliques; et quand ces particules ne sont encore que réduites en poudre palpable, elles tombent en sédiment au fond de l’eau, et ne peuvent former que des concrétions ou des incrustations grossières; elles ne pénètrent les autres corps qu’autant qu’elles sont assez atténuées pour être reçues dans leurs pores, et, en cet état d’atténuation, elles n’altèrent ni la limpidité ni même la légèreté de l’eau qui les contient et qui ne leur sert que de véhicule: néanmoins ce sont souvent ces eaux si pures en apparence dans lesquelles se forment en moins de temps les pétrifications les plus solides; on a exemple de crabes et d’autres corps pétrifiés en moins de quelques mois dans certaines eaux, et particulièrement en Sicile, près des côtes de Messine; on cite aussi les bois convertis en cailloux dans certaines rivières, et je suis persuadé qu’on pourroit, par notre art, imiter la nature, et pétrifier les corps avec de l’eau convenablement chargée de matière pierreuse: et cet art, s’il étoit porté à sa perfection, seroit plus précieux pour la postérité que l’art des embaumements.

Mais c’est plutôt dans le sein de la terre que dans la mer, et surtout dans les couches de matière calcaire, que s’opère la pétrification de ces crabes et autres crustacés, dont quelques uns, et notamment les oursins, se trouvent souvent pétrifiés en cailloux,
ou plutôt en pierres à fusil placées entre les bancs de pierre tendre et de craie. On trouve aussi des poissons pétrifiés dans les matières calcaires : nous en avons deux au Cabinet du Roi, dont le premier paroit être un saumon d’environ deux pieds et demi de longueur, et le second une truite de quinze à seize pouces, très bien conservés ; les écailles, les arêtes, et toutes les parties solides de leurs corps, sont pleinement pétrifiées en matière calcaire. Mais c’est surtout dans les schistes, et particulièrement dans les ardoises, que l’on trouve des poissons bien conservés ; ils y sont plutôt minéralisés que pétrifiés ; et, en général, ces poissons dont la nature a conservé les corps sont plus souvent dans un état de dessèchement que de pétrification.

Ces espèces de reliques des animaux de la terre sont bien plus rares que celles des habitants de la mer, et il n’y a d’ailleurs que les parties solides de leur corps, telles que les os et les cornes, ou plutôt les bois de cerf, de renne, etc., qui se trouvent quelquefois dans un état imparfait de pétrification commencée : souvent même, la forme de ces ossements ne conserve pas ses vraies dimensions ; ils sont gonflés par l’interposition de la substance étrangère qui s’est insinuée dans leur texture, sans que l’ancienne substance fût détruite ; c’est plutôt une incrustation intérieure qu’une véritable pétrification. L’on peut voir et reconnaître aisément ce gonflément de volume dans les fémurs et autres os fossiles d’éléphant qui sont au Cabinet du Roi : leur dimension en longueur n’est pas proportionnelle à celles de la largeur et de l’épaisseur.
Je le répète, c'est à regret que je quitte ces objets intéressants, ces précieux monuments de la vieille nature, que ma propre vieillesse ne me laisse pas le temps d'examiner assez pour en tirer les conséquences que j'entrevois, mais qui, n'étant fondées que sur des aperçus, ne doivent pas trouver place dans cet ouvrage, où je me suis fait une loi de ne présenter que des vérités appuyées sur des faits. D'autres viendront après moi, qui pourront supputer le temps nécessaire au plus grand abaissement des mers et à la diminution des eaux par la multiplication des coquillages, des madrépores, et de tous les corps pierreux qu'elles ne cessent de produire; ils balanceront les pertes et les gains de ce globe dont la chaleur propre s'exhale incessamment, mais qui reçoit en compensation tout le feu qui réside dans les détriments des corps organisés; ils en concluront que si la chaleur du globe étoit toujours la même, et les générations d'animaux et de végétaux toujours aussi nombreuses, aussi promptes, la quantité de l'élément du feu augmenteroit sans cesse, et qu'enfin, au lieu de finir par le froid et la glace, le globe pourrait périr par le feu. Ils compareront le temps qu'il a fallu pour que les détriments combustibles des animaux et végétaux aient été accumulés dans les premiers âges, au point d'entretenir pendant des siècles le feu des volcans; ils compareront, dis-je, ce temps avec celui qui seroit nécessaire pour qu'à force de multiplications des corps organisés les premières couches de la terre fussent entièrement composées de substances combustibles; ce qui dès lors pourrait produire un nouvel incendie général, ou du moins un très grand nombre de nouveaux volcans:
mais ils verront en même temps que la chaleur du globe diminuant sans cesse, cette fin n'est point à craindre, et que la diminution des eaux, jointe à la multiplication des corps organisés, ne pourra que retarder de quelques milliers d'années l'envahissement du globe entier par les glaces, et la mort de la nature par le froid.

PIERRES VITREUSES
MÉLANGÉES DE MATIÈRES CALCAIRES.

Après les stalactites et concrétions purement calcaires, nous devons présenter celles qui sont mélangées de matières vitreuses et de substances calcaires, et nous observerons d'abord que la plupart des matières vitreuses de seconde formation ne sont pas absolument pures : les unes, et c'est le plus grand nombre, doivent leur couleur à des vapeurs métalliques ; dans plusieurs autres, le métal, et le fer en particulier, est entré comme partie massive et constitutante, et leur a donné non seulement la couleur, mais une densité plus grande que celle d'aucun verre primitif, et qu'on ne peut attribuer qu'au métal : enfin d'autres sont mélangées de parties calcaires en plus ou moins grande quantité. La zéolite, le lapis-lazuli, les pierres à fusil, la pierre meulière, et même
les spaths fluors, sont tous mélangés en plus ou moins grande quantité de substances calcaires et de matière vitreuse, souvent chargée de parties métalliques; et chacune de ces pierres a des propriétés particulières, par lesquelles on doit les distinguer les unes des autres.

ZÉOLITE.

Les anciens n'ont fait aucune mention de cette pierre, et les naturalistes modernes l'ont confondue avec les spaths, auxquels la zéolite ressemble en effet par quelques caractères apparents. M. Cronstedt est le premier qui l'en ait distinguée, et qui nous ait fait connaître quelques unes de ses propriétés particulières. MM. Swab, Bucquet, Bergman, et quelques autres, ont ensuite essayé d'en faire l'analyse par la chimie : mais, de tous les naturalistes et chimistes récents, M. Pelletier est celui qui a travaillé sur cet objet avec le plus de succès.

Cette pierre se trouve en grande quantité dans l'île de Féroé, et c'est de là qu'elle s'est d'abord répandue en Allemagne et en France : c'est cette même zéolite de Féroé que M. Pelletier a choisie de préférence pour faire ses expériences, après l'avoir distinguée d'une autre pierre à laquelle on a donné le nom de zéolite veloutée, et qui n'est pas une zéolite, mais une pierre calaminaire.

M. Pelletier a reconnu que la substance de la vraie
zéolite est un composé de matière vitreuse ou argileuse et de substance calcaire : et comme la quantité de la matière vitreuse y est plus grande que celle de la substance calcaire, cette pierre ne fait pas d’abord effervescence avec les acides ; mais elle ne leur oppose qu’une foible résistance, car les acides vitriolique et nitreux l’entament et la dissolvent en assez peu de temps. La dissolution se présente en consistance de gelée, et ce caractère qu’on ait donné comme spécial et particulier à la zéolite est néanmoins commun à toutes les pierres qui sont mélangées de parties vitreuses et calcaires ; car leur dissolution est toujours plus ou moins gélatineuse, et celle de la zéolite est presque solide et tremblotante, comme la gelée de corne de cerf.

La zéolite de Féroé entre d’elle-même en fusion, comme toutes les autres matières mélangées de parties vitreuses et calcaires, et le verre qui en résulte est transparent et d’un beau blanc ; ce qui prouve qu’elle ne contient point de parties métalliques, qui ne manqueroient pas de donner de la couleur à ce verre, dont la transparence démontre aussi que la matière vitreuse est dans cette zéolite en bien plus grande quantité que la substance calcaire ; car le verre seroit naugeux ou même opaque, si cette substance calcaire y étoit en quantité égale ou plus grande que la matière vitreuse. La zéolite d’Islande contient, selon M. Bergman, quarante-huit centièmes de silex, vingt-deux d’argile, et douze à quatorze de matière calcaire. L’argile et le silex de M. Bergman étant des matières vitreuses, il y auraient dans cette zéolite d’Islande beaucoup moins de parties calcaires et plus de parties
vitreuses que dans la zéolite de Féroé. Ce chimiste ajoute que ces nombres quarante-huit, vingt-deux, et quatorze, additionnés ensemble, et ajoutés à ce qu'il y a d'eau, donnent un total qui excède le nombre de cent. Cet excédant, dit-il, provient de ce que la chaux entre dans les zéolites sans air fixe, dont elle s'imprègne ensuite par la précipitation. D'autres zéolites contiennent les mêmes matières, mais dans des proportions différentes. Nous devons observer, au reste, que ce n'est qu'avec la zéolite la plus blanche et la plus pure, telle que celle de Féroé, que l'on peut obtenir un verre blanc et transparent : toutes les autres zéolites donnent un émail coloré spongieux et friable, qui ne devient consistant et dur qu'en continuant le feu, et même l'augmentant après la fusion. M. Pott a observé que la zéolite fournissait une assez grande quantité d'eau ; ce qui prouve encore le mélange de la matière calcaire, qui, comme l'on sait, donne toujours de l'eau quand on la traite au feu. M. Bergman a fait la même observation, et ce savant chimiste en conclut avec raison que cette pierre n'a pas été produite par le feu, comme certains minéralogistes l'ont prétendu parce qu'on ne l'a jusqu'ici trouvée que dans les terrains volcanisés. M. Faujas de Saint-Fond, qui connaît mieux que personne les matières produites par le feu des volcans, loin d'y comprendre la zéolite, dit au contraire expressément que toutes les zéolites contenues dans les laves ont été saisies par ces verres en fusion, qu'elles existoient auparavant telles que nous les voyons, et qu'elles n'y sont que plus ou moins altérées par le feu, qui néanmoins n'étoit pas assez violent pour les fondre.
La zéolite de Féroé est communément blanche, et quelquefois rougeâtre lorsqu'elle est couverte et mélangée de parties ferrugineuses réduites en rouille. Cette zéolite blanche est plus dure que le spath; et cependant elle ne l'est pas assez pour étinceler sous le choc de l'acier: elle est ordinairement cristallisée en rayons divergents, et paroît être la plus pure de toutes les pierres de cette sorte; car il s'en trouve d'autres, en plus gros volume et plus grande quantité, qui ne sont pas cristallisées régulièrement, et dont les formes sont très différentes, globuleuses, cylindriques, coniques, lisses, ou mamelonnées; mais presque toutes ont le caractère commun de présenter dans leur texture des rayons qui tendent du centre à la circonférence. Je dis presque toutes, parce que j'ai vu entre les mains de M. Faujas de Saint-Fond une zéolite cristallisée en cube, qui paroît être composée de filets ou de petites lames parallèles. Ce savant et infatigable observateur a trouvé cette zéolite cubique à l'île de Staffa, dans la grotte de Fingal. On sait que cette île, ainsi que toutes les autres îles Hébrides au nord de l'Écosse, sont, comme l'Islande, presque entièrement couvertes de produits volcaniques; et c'est surtout dans l'île de Mull que les zéolites sont en plus grande abondance; et comme jusqu'ici on n'a rencontré ces pierres que dans les terrains volcanisés, on paroîsort fondé à les regarder comme des produits du feu. Il en a ramassé plusieurs autres dans les terrains volcanisés qu'il a parcourus; et dans tous les

1. On trouve des zéolites à l'île de Féroé, à celle de Staffa, en Islande, en Sicile autour de l'Etna, à Rochemore, dans les volcans éteints du Vivarais, et on en a aussi rencontré dans l'île de Bourbon.
échantillons qu'il m'en a montrés on peut reconnaître clairement que cette pierre n'a pas été produite par le feu, et qu'elle a seulement été saisie par les laves en fusion dans lesquelles elle est incorporée, comme les agates, cornalines, calcédoines, et même les spaths calcaires qui s'y trouvent tels que la nature les avoir produits avant d'avoir été saisis par le basalte ou la lave qui les recèle.

LAPIS-LAZULI.

Les naturalistes récents ont mis le lapis-lazuli au nombre des zéolites, quoiqu'il en diffère beaucoup plus qu'il ne leur ressemble ; mais lorsqu'on se persuade, d'après le triste et stérile travail des nomenclateurs, que l'histoire naturelle consiste à faire des classes et des genres, on ne se contente pas de mettre ensemble les choses de même genre, et l'on y réunit souvent très mal à propos d'autres choses qui n'ont que quelques petits rapports, et souvent des caractères essentiels très différents, et même opposés à ceux du genre sous lequel on veut les comprendre. Quelques chimistes ont défini le lapis, zéolite bleue mêlée d'argent, tandis que cette pierre n'est point une zéolite, et qu'il est très douteux qu'on puisse en tirer de l'argent : d'autres ont assuré qu'on en tire de l'or, ce qui est tout aussi douteux, etc.

Le lapis ne se boursoufle pas, comme la zéolite, lorsqu'il entre en fusion ; sa substance et sa texture
sont toutes différentes. Le lapis n'est point disposé, comme la zéolite, par rayons du centre à la circonférence; il présente un grain serré, aussi fin que celui du jaspe; et on le regarderait avec raison comme un jaspe, s'il en avoit la dureté et s'il prenoit un aussi beau poli: néanmoins il est plus dur que la zéolite. Il n'est mêlé ni d'or ni d'argent, mais de parties pyriteuses qui se présentent comme des points, des taches ou des veines de couleur d'or. Le fond de la pierre est d'un beau bleu, souvent taché de blanc: quelquefois cette couleur bleue tire sur le violet. Les taches blanches sont des parties calcaires, et offrent quelquefois la texture et le luisant du gypse: ces parties blanches, choquées contre l'acier, ne donnent point d'étincelles, tandis que le reste de la pierre fait feu comme le jaspe. Le seul rapport que cette pierre lapis ait avec la zéolite est qu'elles sont toutes deux composées de parties vitreuses et de parties calcaires; car en plongeant le lapis dans les acides, on voit que quelques unes de ses parties y font effervescence comme les zéolites.

L'opinion des naturalistes modernes étoit que le bleu du lapis provenoit du cuivre: mais le célèbre chimiste Margraff, ayant choisi les parties bleues, et en ayant séparé les blanches et les pyriteuses couleur d'or, a reconnu que les parties bleues ne contenoient pas un atome de cuivre, et que c'étoit au fer qu'on devoit attribuer leur couleur. Il a en même temps observé que les taches blanches sont de la même nature que les pierres gypseuses.

Le lapis étant composé de parties bleues qui sont vitreuses, et de parties blanches qui sont gypseuses,
C'est-à-dire calcaires imprégnées d'acide vitriolique, il se fond sans addition à un feu violent. Le verre qui en résulte est blanchâtre ou jaunâtre, et l'on y voit encore, après la vitrification de la masse entière, quelques parties de la matière bleue qui ne sont pas vitrifiées; et ces parties bleues séparées des blanches n'entrent point en fusion sans fondant : elles ne perdent pas même leur couleur au feu ordinaire de calcination; et c'est ce qui distingue le vrai lapis de la pierre arménienne et de la pierre d'azur, dont le bleu s'évanouit au feu, tandis qu'il demeure inhérent et fixe dans le lapis-lazuli.

Le lapis résiste aussi à l'impression des éléments humides, et ne se décolore point à l'air. On en fait des cachets dont la gravure est très durable. Lorsqu'on lui fait subir l'action d'un feu même assez violent, sa couleur bleue, au lieu de diminuer ou de s'évanouir, paroit au contraire acquérir plus d'éclat.

C'est avec les parties bleues du lapis que se fait l'outremer : le meilleur est celui dont la couleur bleue est la plus intense. La manière de le préparer a été indiquée par Boèce de Boot, et par plusieurs autres auteurs. Je ne sache pas qu'on ait encore rencontré du vrai lapis en Europe; il nous arrive de l'Asie en morceaux informes. On le trouve en Tartarie dans le pays des Calmoucks, et au Thibet. On en a aussi rencontré dans quelques endroits au Pérou et au Chili.

Et par rapport à la qualité du lapis, on peut en distinguer de deux sortes, l'une dont le fond est d'un bleu pur, et l'autre d'un bleu violet et pourpré. Ce lapis est plus rare que l'autre; et M. Dufay, de l'Académie des Sciences, ayant fait des expériences sur tous
deux, a reconnu, après les avoir exposés aux rayons du soleil, qu'ils en conservaient la lumière, et que les plus bleus la recevaient en plus grande quantité et la conservaient plus long-temps que les autres, mais que les parties blanches et les taches et veines pyriteuses ne recevaient ni ne rendaient aucune lumière. Au reste, cette propriété du lapis lui est commune avec plusieurs autres pierres qui sont également phosphoriques.

PIERRES A FUSIL.

Les pierres à fusil sont des agates imparfaites, dont la substance n'est pas purement vitreuse, mais toujours mélangée d'une petite quantité de matière calcaire : aussi se forment-elles dans les délis horizontaux des craies et des tufs calcaires, par le suintement des eaux chargées des molécules de grès, qui se trouvent souvent mêlées avec la matière crétacée ; ce sont des stalactites ou concrétions produites par la sécrétion des parties vitreuses mêlées dans la craie : l'eau les dissout et les dépose entre les joints et dans les cavités de cette terre calcaire ; elles s'y réunissent par leur affinité, et prennent une figure arrondie, tuberculeuse ou plate, selon la forme des cavités qu'elles remplissent. La plupart de ces pierres sont solides et pleines jusqu'au centre : mais il s'en trouve aussi qui sont creuses, et qui contiennent dans leur cavité de la craie semblable à celle qui les environne et les recouvre à l'extérieur.
Quoique la densité des pierres à fusil approche de celle des agates, elles n'ont pas la même dureté; elles sont, comme les grès, toujours imbibées d’eau dans leur carrière, et elles acquièrent de même plus de dureté par le desséchement à l’air. Aussi les ouvriers qui les taillent n’attendent pas qu’elles se soient desséchées; ils les prennent au sortir de la carrière, et les trouvent d’autant moins dures qu’elles sont plus humides. Leur couleur est alors d’un brun plus ou moins foncé, qui s’éclaircit et devient gris ou jaunâtre à mesure qu’elles se dessèchent. Ces pierres, quoique moins pures que les agates, étincellent mieux contre l’acier, parce qu’étant moins dures, il s’en détache par le choc une plus grande quantité de particules. Elles sont communément d’une couleur de corne jaunâtre après leur entier desséchement; mais il y en a aussi de grises, de brunes, et même de rougâtres: elles ont presque toutes une demi-transparence lorsqu’elles sont minces; mais au dessus d’une ligne ou d’une ligne et demie d’épaisseur la transparence ne subsiste plus, et elles paraissent entièrement opaques.

Ces pierres se forment, comme les cailloux, par couches additionnelles de la circonférence au centre: mais leur substance est à peu près la même dans toutes les couches dont elles sont composées; on en trouve seulement quelques unes où l’on distingue des zones de couleur un peu différente du reste, et d’autres qui contiennent quelques couches évidemment

1. La pesanteur spécifique de la plupart des agates excède 26000; celle de la pierre à fusil blonde est de 25941; et celle de la pierre à fusil noirâtre, de 25817.
mélangees de matière calcaire. Celles qui sont creuses ne produisent pas, comme les cailloux creux, des cristaux dans leur cavité intérieure; le suc vitreux n'est pas assez dissous dans ces pierres, ni assez pur, pour pouvoir se cristalliser. Elles ne sont, dans la réalité, composées que de petits grains très fins du grès, dont les poudres se sont mêlées avec celles de la craie, et qui s'en sont ensuite séparées par une simple sécrétion et sans dissolution; en sorte que ces grains ne peuvent ni former des cristaux ni même des agates dures et compactes, mais de simples concrétions qui ne diffèrent des grès que par la finesse du grain, encore plus atténué dans les pierres à fusil que dans les grès les plus fins et les plus durs.

Néanmoins ces grès durs font feu comme la pierre à fusil, et sont à très peu près de la même densité¹; et comme elle est, ainsi que le grès, plus pesante et moins dure dans sa carrière qu'après son dessèchement, elle me paraît, à tous égards, faire la nuance dans les concrétions quartzeuses entre les agates et les grès. Les pierres à fusil sont les dernières stalactites du quartz, et les grès sont les premières concrétions de ses détriments; ce sont deux substances de même essence, et qui ne diffèrent que par le plus ou moins d'atténuation de leurs parties constituantes. Les grains du quartz sont encore entiers dans le grès; ils sont en partie dissous dans les pierres à fusil; ils le sont encore plus dans les agates; et enfin ils le sont complètement dans les cristaux.

¹. Le grès dur, nommé grisard, pèse spécifiquement 24928, et le grès luisant de Fontainebleau pèse 25616; ce qui approche assez de la pesanteur spécifique, 25817, de la pierre à fusil.
Nous avons dit que les grès sont souvent mélangés de matière calcaire : il en est de même des pierres à fusil, et elles sont rarement assez pures pour être susceptibles d'un beau poli; leur demi-transparence est toujours nuageuse; leurs couleurs ne sont ni vives ni variées, ni nettement tranchées comme dans les agates, les jasps, et les cailloux, que nous devons distinguer des pierres à fusil, parce que leur structure n'est pas la même, et que leur origine est différente. Les cailloux sont, comme le cristal et les agates, des produits immédiats du quartz ou des autres matières vitreuses; ce sont des stalactites qui ne diffèrent les unes des autres que par le plus ou moins de pureté, mais dans lesquelles le suc vitreux est dissous, au lieu que les pierres à fusil ne sont que des agrégats de particules quartzeuses, produits par une sécrétion qui s'opère dans les matières calcaires; et les grains quartzeux qui composent ces pierres ne sont pas assez dissous pour former une substance qui puisse prendre la même dureté et recevoir le même poli que les vrais cailloux, qui, quoique opaques, ont plus d'éclat et de sécheresse; car ils ne sont point humides dans leur carrière, et ils n'acquièrent ni pesanteur, ni dureté, ni sécheresse à l'air, parce qu'ils ne sont pas imbibés d'eau comme les pierres à fusil et les grès.

On peut donc, tant par l'observation que par l'analogie, suivre tous les passages et saisir les nuances entre le grès, la pierre à fusil, et l'agate. Par exemple, les pierres à fusil qu'on trouve à Vaugirard près

Paris sont presque des agates; elles ne se présentent pas en petits blocs irréguiliers et tuberculeux, mais elles sont en lits continus; leur forme est aplatie, leur couleur est d'un gris brun, et elles prennent un assez beau poli. M. Guettard, savant naturaliste, de l'Académie, a comparé ces pierres à fusil de Vaugirard avec celles de Bougival, qui sont dispersées dans la craie; et il a bien saisi leurs différences, quoiqu'elles aient été produites de même dans des matières calcaires, et qu'elles présentent également des impressions de coquilles.

En général, les pierres à fusil se trouvent toujours dans les craies, les tufs, et quelquefois entre les bancs solides des pierres calcaires, au lieu que les vrais cailloux ne se trouvent que dans les sables, les argiles, les schistes, et autres détritimes des matières vitreuses. Aussi les cailloux sont-ils purement vitreux, et les pierres à fusil sont toutes mélangées d'une plus ou moins grande quantité de matière calcaire. Il y en a même dont on peut faire de la chaux, quoiqu'elles étincellent contre l'acier.

Au reste, les pierres à fusil ne se trouvent que rarement dans les bancs de pierres calcaires dures, mais presque toujours dans les craies et les tufs, qui ne sont que les détritimes où les poudres des premières matières coquilleuses déposées par les eaux, et souvent mêlées d'une certaine quantité de poudre de quartz ou de grès.

On trouve de ces pierres à fusil dans plusieurs provinces de France; mais les meilleures se tirent près de Saint-Aignan en Berri. On en fait un assez grand commerce; et l'on prétend que, après avoir épuisé la
PIERRES A FUSIL.

carrière de ces pierres, il s'en reproduit de nouvelles. Il seroit facile de vérifier ce fait, qui me paraît probable, s'il ne supposoit pas un très grand nombre d'années pour la seconde production de ces pierres, qu'il seroit bon de comparer avec celles de la première formation. On en trouve de même dans plusieurs autres contrées de l'Europe, et notamment dans les pays du Nord. On en connoît aussi en Asie et dans le nouveau continent comme dans l'ancien. La plupart des galets que la mer jette sur le rivage sont de la même nature que les pierres à fusil, et l'on en voit dans quelques anses des amas énormes. Ces galets sont polis, arrondis, et aplatis par le frottement, au lieu que les pierres à fusil qui n'ont point été roulées conservent leur forme primitive sans altération, tant qu'elles demeurent enfouies dans le lieu de leur formation.

Mais lorsque les pierres à fusil sont long-temps exposées à l'air, leur surface commence par blanchir, et ensuite elle se ramollit, se décompose par l'action de l'acide aérien, et se réduit enfin en terre argileuse; et l'on ne doit pas confondre cette écorce blanchâtre des pierres à fusil, produite par l'impression de l'air, avec la couche de craie dont elles sont enveloppées au sortir de la terre ; ce sont, comme l'on voit, deux matières très différentes; car la pierre à fusil ne commence à se décomposer, par l'action des éléments humides, que quand l'eau des pluies a lavé sa surface et emporté cette couche de craie dont elle étoit en- duite.

Les cailloux les plus durs se décomposent à l'air comme les pierres à fusil : leur surface, après avoir
blanchi, tombe en poussière avec le temps, et découvre une seconde couche sur laquelle l’acide aérien agit comme sur la première; en sorte que peu à peu toute la substance du caillou se ramollit, et se convertit en terre argileuse. Le même changement s’opère dans toutes les matières vitreuses; car le quartz, le grès, les jaspes, les granites, les laves des volcans, et nos verres factices, se convertissent, comme les cailloux, en terre argileuse par la longue impression des éléments humides, dont l’acide aérien est le principal agent. On peut observer les degrés de cette décomposition en comparant des cailloux de même sorte et pris dans le même lieu; on verra que, dans les uns, la couche de la surface décomposée n’a qu’un quart ou un tiers de ligne d’épaisseur, et que, dans d’autres, la décomposition pénètre à deux ou trois lignes: cela dépend du temps plus ou moins long pendant lequel le caillou a été exposé à l’action de l’air; et ce temps n’est pas fort reculé, car en moins de deux ou trois siècles cette décomposition peut s’opérer: nous en avons l’exemple dans les laves des volcans qui se convertissent en terre encore plus promptement que les cailloux et les pierres à fusil. Et ce qui prouve que l’air agit autant et plus que l’eau dans cette décomposition des matières vitreuses, c’est que, dans tous les cailloux isolés et jonchés sur la terre, la partie exposée à l’air est la seule qui se décompose, tandis que celle qui touche à la terre, sans même y adhérer, conserve sa dureté, sa couleur, et même son poli: ce n’est donc que par l’action presque immédiate de l’acide aérien que les matières vitreuses se décomposent et prennent la forme de terre.
Autre preuve que cet acide est le seul et le premier qui, dès le commencement, ait agi sur la matière du globe vitrifié : l'eau dissout les matières vitreuses sans les décomposer, puisque les cristaux de roche, les agates, et autres stalactites quartzéuses, conservent la dureté et toutes les propriétés des matières qui les produisent, au lieu que l'humidité, animée par l'acide aérien, leur enlève la plupart de ces propriétés, et change ces verres de nature solide et sèche en une terre molle et ductile.

PIERRE MEULIÈRE.

Les pierres que les anciens employoient pour moudre les grains étoient d'une nature toute différente de celle de la pierre meulière dont il est ici question. Aristote, qui embrassoit par son génie les grands et les petits objets, avoit reconnu que les pierres molaires dont on se servoit en Grèce étoient d'une matière fondue par le feu, et qu'elles différoient de toutes les autres pierres produites par l'intermède de l'eau. Ces pierres molaires étoient en effet des basaltes et autres laves solides de volcan, dont on choisissoit les masses qui offroient le plus grand nombre de trous ou de petites cavités, et qui avoient en même temps assez de dureté pour ne pas s'écraser ou s'égrener par le frottement continu de la meule supérieure contre l'inférieure : on tiroit ces basaltes de quelques îles de l'Archipel, et particulièrement de celle de Nicari; il s'en trou-
voit aussi en Ionie : les Toscans ont dans la suite em-
ployé au même usage le basalte de Vulsinum, au-
jourd'hui Bolsena.

Mais la pierre meulière dont nous nous servons
aujourd'hui est d'une origine et d'une nature toute
différente de celle des basaltes ou des laves : elle n'a
point été formée par le feu, mais produite par l'eau;
et il me paroit qu'on doit la mettre au nombre des
concrétions ou agrégations vitreuses produites par
l'infiltration des eaux, et qu'elle n'est composée que
de lames de pierres à fusil, incorporées dans un ci-
ment mélangé de parties calcaires et vitreuses. Lors-
que ces deux matières, délayées par l'eau, se sont
mêlées dans le même lieu, les parties vitreuses les
moins impures se seront séparées des autres pour for-
mer les lames de ces pierres à fusil, et elles auront
en même temps laissé de petits intervalles ou cavités
entre elles, parce que la matière calcaire, faute d'af-
finité, ne pouvoit s'unir intimement avec ces corps vi-
treux ; et en effet, les pierres meulières dans lesquelles
la matière calcaire est la plus abondante sont les plus
trouées, et celles au contraire où cette même matière
ne s'est trouvée qu'en petite quantité, et dans les-
quelles la substance vitreuse étoit pure ou très peu
mêlange, n'ont aussi que peu ou point de trous, et
ne forment pour ainsi dire qu'une grande pierre à
fusil continue, et semblable aux agates imparfaites
qui se trouvent quelquefois disposées par lits hori-
zontaux d'une assez grande étendue ; et ces pierres
dont la masse est pleine et sans trous ne peuvent être
employées pour moudre les grains, parce qu'il faut
des vides dans le plein de la masse pour que le frot-
PIERRE MEULIÈRE.

...s'exerce avec force, et que le grain puisse être divisé et moulu, et non pas simplement écrasé ou écaché : aussi rejette-t-on, dans le choix de ces pierres, celles qui sont sans cavités, et l'on ne taille en meules que celles qui présentent des trous ; plus ils sont multipliés, mieux la pierre convient à l'usage auquel on la destine.

Ces pierres meulières ne se trouvent pas en grandes couches, comme les bancs de pierres calcaires, ni même en lits aussi étendus que ceux des pierres à plâtre ; elles ne se présentent qu'en petits amas, et forment des masses de quelques toises de diamètre sur dix ou tout au plus vingt pieds d'épaisseur ; et l'on a observé, dans tous les lieux où se trouvent ces pierres meulières, que leur amas ou monceau porte immédiatement sur la glaise, et qu'il est surmonté de plusieurs couches d'un sable qui permet à l'eau de s'infiltrer et de déposer sur la glaise les sucs vitreux et calcaires dont elle s'est chargée en les traversant. Ces pierres ne sont donc que de seconde et même de troisième formation ; car elles ne sont composées que de particules vitreuses et calcaires que l'eau détache des couches supérieures de sables et graviers, en les traversant par une longue et lente stillation dans toute leur épaisseur ; ces sucs pierreux, déposés sur la glaise qu'ils ne peuvent pénétrer, se solidifient à mesure que l'eau s'écoule ou s'exhale, et ils forment une masse concrète en lits horizontaux sur la glaise : ces lits sont séparés, comme dans les pierres calcaires de dernière formation, par une espèce de bousin ou pierre imparfaite, tendre, et pulvérulente ; et les lits de bonne pierre meulière ont depuis un jusqu'à trois pieds d'épaisseur ;
souvent il n'y en a que quatre ou cinq bancs les uns sur les autres, toujours séparés par un lit de bousin, et l'on ne connoit en France que la carrière de La Ferté-sous-Jouarre dans laquelle les lits de pierre meulière soient en plus grand nombre. Mais partout ces petites carrières sont circonscrites, isolées, sans appendice ni continuité avec les pierres adjacentes; ce sont des amas particuliers qui ne se sont faits que dans certains endroits où des sables vitreux, mêlés de terres calcaires ou limoneuses, ont été accumulés et déposés immédiatement sur la glaise, qui a retenu les stillations de l'eau chargée de ces molécules pierreuses: aussi ces carrières de pierre meulière sont-elles assez rares et ne sont jamais fort étendues, quoiqu'on trouve en une infinité d'endroits des morceaux et des petits blocs de ces mêmes pierres dispersés dans les sables qui portent sur la glaise.

Au reste, il n'y a dans la pierre meulière qu'une assez petite quantité de matière calcaire, car cette pierre ne fait point effervescence avec les acides; ainsi la substance vitreuse recouvre et défend la matière calcaire, qui néanmoins existe dans cette pierre, et qu'on en peut tirer par le lavage, comme l'a fait M. Geoffroy. Cette pierre n'est qu'un agrégat de pierres à fusil réunies par un ciment plus vitreux que calcaire; les petites cavités qui s'y trouvent proviennent non seulement des intervalles que ce ciment laisse entre les pierres à fusil, mais aussi des trous dont ces pierres sont elles-mêmes percées. En général, la plupart des pierres à fusil présentent des cavités, tant à leur surface que dans l'intérieur de leur masse, et ces cavités sont ordinairement remplies de craie; et c'est de cette
même craie mêlée avec le suc vitreux qu’est composé le ciment qui réunit les pierres à fusil dans la pierre meulière.

Ces pierres meulières ne se trouvent pas dans les montagnes et collines calcaires; elles ne portent point d’impressions de coquilles; leur structure ne présente qu’un amas de stalactites lamellées de pierres à fusil, ou de congélation fistuleuses des molécules de grès et d’autres sables vitreux, et l’on pourroit comparer leur formation à celle des tufs calcaires, auxquels cette pierre meulière ressemble assez par sa texture : mais elle en diffère essentiellement par sa substance. Ce n’est pas qu’il n’y ait aussi d’autres pierres dont on se sert faute de celle-ci pour moudre les grains. « La pierre de la carrière de Saint-Julien, diocèse de Saint-Pons en Languedoc, qui fournit les meules de moulin à la plus grande partie de cette province, consiste, dit M. de Gensanne, en un banc de pierre calcaire parsemé d’un silex très dur, de l’épaisseur de quinze ou vingt pouces, et tout au plus de deux pieds; il se trouve à la profondeur de quinze pieds dans la terre, et est recouvert par un autre banc de roche calcaire simple qui a toute cette épaisseur, en sorte que, pour extraire les meules, on est obligé de couper et déblayer ce banc supérieur, qui est très dur, ce qui coûte un travail fort dispendieux. » On voit par cette indication que ces pierres calcaires parsemées de pierres à fusil, dont on se sert en Languedoc pour moudre les grains, ne sont pas aussi bonnes et doivent s’égrener plus aisément que les vraies pierres meulières, dans lesquelles il n’y a qu’une petite quantité de matière calcaire intimement mêlée avec
le suc vitreux, et qui réunit les pierres à fusil dont la substance de cette pierre est presque entièrement composée.

SPATHS FLUORS.

C'est le nom que M. Margraff a donné à ces spaths; et comme ils sont composés de matière calcaire et de parties sulfureuses ou pyriteuses, nous les mettons à la suite des matières qui sont composées de substances calcaires mélangées avec d'autres substances : on aurait dû conserver à ces spaths le nom de fluors, pour éviter la confusion qui résulte de la multiplicité des dénominations; car on les a appelés spaths pesants, spaths vitreux, spaths phosphoriques, et l'on a souvent appliqué les propriétés des spaths pesants à ces spaths fluors, quoique leur origine et leur essence soient très différentes. Margraff lui-même comprend sous la dénomination de spaths fusibles ces spaths fluors, qui ne sont point fusibles.

« Il y a, dit-il, des spaths fusibles composés de lames groupées ensemble d'une manière singulière; ces lames n'ont aucune transparence, et leur couleur tire sur le blanc de lait : d'autres affectent une figure cubique; ils sont plus ou moins transparents, et diversement colorés : on les connaît sous les noms de fluors, de fausses améthystes, de fausses émeraudes, de fausses topazes, de fausses hyacinthes, etc....... Ils se trouvent ordinairement dans les filons des mines, et ser-
vent de matrice aux minéraux qu’ils renferment; ils sont outre cela un peu plus durs que les spaths phosphoriques, c’est-à-dire que les spaths d’un blanc de lait. — Les spaths fusibles vitreux, c’est-à-dire ceux qui affectent une figure cubique, soumis au feu jusqu’à l’incandescence, jettent des étincelles dans l’obscurité; mais leur lueur est fort foible; après quoi ils se divisent par petits éclats. Les spaths fusibles phosphoriques, soumis à la même chaleur, jettent une lumière très vive et très foncée; ensuite ils se brisent en plusieurs morceaux qu’on a beaucoup plus de peine à réduire en poudre que les éclats des spaths fusibles vitreux. » Les vrais spaths fluors sont donc désignés ici comme spaths fusibles et spaths vitreux, quoiqu’ils ne soient ni fusibles ni vitreux; et quoique cet habile chimiste semble les distinguer des spaths qu’il appelle phosphoriques, les différences ne sont pas assez marquées pour qu’on ne puisse les confondre, et il est à croire que ce qu’il appelle spath fusible vitreux et spath fusible phosphorique se rapporte également aux spaths fluors, qui ne diffèrent les uns des autres que par le plus ou moins de pureté: et en effet, deux de nos plus savants chimistes, MM. Sage et Demeste, ont dit expressément que les spaths vitreux, fusibles, ou phosphoriques, ne sont qu’une seule et même chose; or ces spaths fluors, loin d’être fusibles, sont très réfractaires au feu: mais il est vrai qu’ils ont la propriété d’être, comme le borax, des fondants très actifs; et c’est probablement à cause de cette propriété fondante qu’on leur a donné le nom de spaths fusibles: mais on ne voit pas pourquoi ils sont dénommés spaths vitreux fusibles, puisque de tous les spaths
il n'y a que le seul feld-spath qui soit en effet vitreux et fusible.

Quelques habiles chimistes ont confondu ces spaths fluors avec les spaths pesants, quoique ces deux substances soient très différentes par leur essence, et qu'elles ne se ressemblent que par de légères propriétés : les spaths fluors réduits en poudre prennent, par le feu, de la phosphorescence comme les spaths pesants; mais ce caractère est équivoque, puisque les coquilles et autres matières calcaires réduites en poudre prennent, comme les spaths pesants et les spaths fluors, de la phosphorescence par l'action du feu : et si nous comparons toutes les autres propriétés des spaths pesants avec celles des spaths fluors, nous verrons que leur essence n'est pas la même, et que leur origine est bien différente.

Les spaths pesants sont d'un tiers plus denses que les spaths fluors, et cette seule propriété essentielle démontre déjà que leurs substances sont très différentes : M. Romé de l'Isle fait mention de quatre principales sortes de spaths fluors, dont les couleurs, la texture, et la forme de cristallisation, diffèrent beaucoup; mais tous sont à peu près d'un tiers plus légers que les spaths pesants, qui d'ailleurs n'ont, comme les pierres précieuses, qu'une simple réfraction, et sont par conséquent homogènes, c'est-à-dire également denses dans toutes leurs parties; tandis que les

1. La pesanteur spécifique du spath pesant, dit pierre de Bologne, est de 44409; celle du spath pesant octaèdre, de 44712; tandis que celle du spath fluor d'Auvergne n'est que de 50943; celle du spath fluor cubique violet, 51757; celle du spath fluor cubique blanc, 51555. (Tables de M. Brisson.)
SPATHS FLUORS.

spathfs fluors au contraire offrent, comme tous les autres cristaux vitreux ou calcaires, une double ré-fraction, et sont composés de différentes substances, ou du moins de couches alternatives de différente densité.

Les spaths fluors sont dissolubles par les acides, même à froid, quoique d'abord il n'y ait que peu ou point d'effervescence, au lieu que les spaths pesants résistent constamment à leur action, soit à froid, soit à chaud : ils ne contiennent donc point de matière calcaire, et les spaths fluors en contiennent en assez grande quantité, puisqu'ils se dissolvent en entier par l'action des acides.

Ces spaths fluors sont plus durs que les spaths calcaires, mais pas assez pour étinceler sous le brique, si ce n'est dans certains points où ils sont mêlés de quartz, et c'est par là qu'on les distingue aisément du feld-spath, qui, de tous les spaths, est le seul étincelant sous le choc de l'acier : mais ces spaths fluors diffèrent encore essentiellement du feld-spath par leur densité, qui est considérablement plus grande, et par leur résistance au feu, auquel ils sont très ré-fractaires, au lieu que le feld-spath y est très fusible; et d'ailleurs, quoiqu'on les ait dénommés spaths vitreux, parce que leur cassure ressemble à celle du verre, il est certain que leur substance est différente de celle du feld-spath et de tous les autres verres primitifs; car l'un de nos plus habiles minéralogistes, M. Monnet, a reconnu par l'expérience que ces spaths

1. La pesanteur spécifique des spaths fluors est, comme l'on vient de le voir, de 30 à 31000; et celle du feld-spath n'est que de 25 à 26000.

BUFFON. IX.
fluors sont principalement composés de soufre et de terre calcaire. M. de Morveau a vérifié les expériences de M. Monnet, qui consistent à dépouiller ces spaths de leur soufre. Leur terre dessoufrée présente les propriétés essentielles de la matière calcaire ; car elle se réduit en chaux et fait effervescence avec les acides : il n'est donc pas nécessaire de supposer dans ces spaths fluors, comme l'ont fait M. Bergman et plusieurs chimistes après lui, une terre de nature particulière, différente de toutes les terres connues, puis qu'ils ne sont réellement composés que de terre calcaire mêlée de soufre.

M. Scheele avait fait, avant M. Monnet, des expériences sur les spaths fluors blancs et colorés, et il remarque avec raison que ces spaths diffèrent essentiellement de la pierre de Bologne, ou spath pesant, ainsi que de l'albâtre et des pierres séléniteuses, qui sont phosphoriques lorsqu'elles ont été calcinées sur les charbons : cet habile chimiste avait en même temps cru reconnaître que ces spaths fluors sont composés d'une terre calcaire combinée, dit-il, avec un acide qui leur est propre et qu'il ne désigne pas ; il ajoute seulement que l'alun et le fer semblent n'être qu'accidentels à leur composition. Ainsi M. Monnet est le premier qui ait reconnu le soufre, c'est-à-dire l'acide vitriolique uni à la substance du feu, dans ces spaths fluors.

M. le docteur Demeste, que nous avons souvent eu occasion de citer avec éloge, a recueilli avec discernement et avec son attention ordinaire les principaux faits qui ont rapport à ces spaths, et je ne peux mieux terminer cet article qu'en les rapportant ici d'après...
spaths fluors.

SPATHS FLUORS.

lui. «La nature, dit-il, nous offre les spaths phosphoriques en masses plus ou moins considérables, tantôt informes et tantôt cristallisées : ils sont plus ou moins transparents, pleins de fentes ou fêlures; et leurs couleurs sont si variées, qu'on les désigne ordinairement par le nom de la pierre précieuse colorée dont ils imitent la nuance. J'ai vu beaucoup de ces spaths informes près des alunières entre Civita-Vecchia et la Tolfa; ils y servent de gangue à quelques filons de la mine de plomb sulfureuse connue sous le nom de galène : on les trouve fréquemment mêlés avec le quartz en Auvergne et dans les Vosges, et avec le spath calcaire dans les mines du comté de Derby en Angleterre.

Quoique ces spaths phosphoriques, et surtout ceux en masses informes, soient ordinairement fendillés, cela n'empêche pas qu'ils ne soient susceptibles d'un fort beau poli; on en rencontre même des pièces assez considérables pour en pouvoir faire de petites tables, des urnes, et autres vases désignés sous les noms de prime d'émeraude, de prime d'améthyste, etc. M. Romé de l'Isle a nommé albâtre vitreux ceux de ces spaths qui, formés par dépôts comme les albâtres calcaires, sont aussi nuancés par zones ou rubans de différentes couleurs, ainsi qu'on en voit dans l'albâtre oriental. Ces albâtres vitreux se trouvent en abondance dans certaines provinces d'Angleterre, et surtout dans le comté de Derby : ils sont panachés ou rubanés des plus vives couleurs, et surtout de différentes teintes d'améthystes sur un fond blanc ; mais ils sont toujours étonnés, et comme formés de pièces de rapport dont on voit les joints; ce qui
est un effet de leur cristallisation rapide et confuse. J'en ai vu à Paris de très belles pièces qui y avaient été apportées par M. Jacob Forster.... On rencontre aussi quelquefois de ce même spath en stalactites côniques, et même en stalagmites ondulées : mais il est beaucoup plus extraordinaire de le trouver cristallisé en groupes plus ou moins considérables, et dont les cubes ont quelquefois plus d'un pied de largeur sur huit à dix pouces de hauteur; ces cubes, tantôt entiers, tantôt tronqués aux angles ou dans leurs bords, varient beaucoup moins dans leur forme que les rhombes du spath calcaire : en récompense, leur couleur est plus variée que celle des autres spaths ; ils sont rarement d'un blanc mat : mais lorsqu'ils ne sont pas diaphanes ou couleur d'aigue-marine, ils sont jaunes, ou rougeâtres, ou violets, ou pourpres, ou roses, ou verts, et quelquefois du plus beau bleu. »

Il me reste seulement à observer que la terre calcaire étant la base de ces spaths fluors, j'ai cru devoir les rapporter aux pierres mélangées de matière calcaire, tandis que la pierre de Bologne et les autres spaths pesants, tirant leur origine de la terre végétale et ne contenant point de matière calcaire, doivent être mis au nombre des produits de la terre limoneuse, comme nous tâcherons de le prouver dans la suite de cet ouvrage.
STALACTITES DE LA TERRE VÉGÉTALE.

La terre végétale, presque entièrement composée des détritus et du résidu des corps organisés, retient et conserve une grande partie des éléments actifs dont ils étoient animés; les molécules organiques qui constituoient la vie des animaux et des végétaux s'y trouvent en liberté, et prêts à être saisies ou pompées pour former de nouveaux êtres : le feu, cet élément sacré qui n'a été déparé qu'à la nature vivante dont il anime les ressorts, ce feu qui maintenoit l'équilibre et la force de toute organisation, se retrouve encore dans les débris des êtres désorganisés, dont la mort ne détruit que la forme et laisse subsister la matière, contre laquelle se brisent ses efforts; car cette même matière organique réduite en poudre n'en est que plus propre à prendre d'autres formes, à se prêter à des combinaisons nouvelles, et à rentrer dans l'ordre vivant des êtres organisés.

Et toute matière combustible provenant originairement de ces mêmes corps organisés, la terre végétale et limoneuse est le magasin général de tout ce qui peut s'enflammer ou brûler : mais, dans le nombre de ces matières combustibles, il y en a quelques unes,
telles que les pyrites, où le feu s'accumule et se fixe en si grande quantité, qu'on peut les regarder comme des corps ignés dont la chaleur et le feu se manifes-
tent dès qu'ils se décomposent. Ces pyrites ou pier-
res de feu sont de vraies stalactites de la terre limo-
neuse; et, quoique mêlées de fer, le fonds de leur
substance est le feu fixé par l'intermédiaire de l'acide : elles
sont en immense quantité, et toutes produites par la
terre végétale dès qu'elle est imprégnée de sels vitrio-
liques; on les voit pour ainsi dire se former dans les
défis et les fentes de l'argile, où la terre limoneuse
amenée et déposée par la stillation des eaux, et en
même temps arrosée par l'acide de l'argile, produit ces
stalactites pyriteuses dans lesquelles le feu, l'acide,
et le fer, contenus dans cette terre limoneuse, se
réunissent par une si forte attraction, que ces pyri-
tes prennent plus de dureté que toutes les autres ma-
tières terrestres, à l'exception du diamant et de quel-
ques pierres précieuses qui sont encore plus dures
que ces pyrites. Nous verrons bientôt que le diamant
et les pierres précieuses sont, comme les pyrites, des
produits de cette terre végétale, dont la substance en
général est plus ignée que terreuse.

En comparant les diamants aux pyrites, nous leur
trouverons des rapports auxquels on n'a pas fait at-
tention : le diamant, comme la pyrite, renferme une
grande quantité de feu; il est combustible, et dès
lors il ne peut provenir que d'une matière d'essence
combustible; et comme la terre végétale est le maga-
sin général qui seul contient toutes les matières in-
flammables ou combustibles, on doit penser qu'il en
tire son origine et même sa substance.
STALACTITES DE LA TERRE VÉGÉTALE.

Le diamant ne laisse aucun résidu sensible après sa combustion; c'est donc, comme le soufre, un corps encore plus igné que la pyrite, mais dans lequel nous verrons que la matière du feu est fixée par un intermède plus puissant que tous les acides.

La force d'affinité qui réunit les parties constituant les corps solides est bien plus grande dans le diamant que dans la pyrite, puisqu'il est beaucoup plus dur; mais, dans l'un et dans l'autre, cette force d'attraction a pour ainsi dire sa sphère particulière, et s'exerce avec tant de puissance, qu'elle ne produit que des masses isolées qui ne tiennent point aux matières environnées, et qui toutes sont régulièrement figurées. Les diamants, comme les pyrites, se trouvent dans la terre limoneuse; ils y sont toujours en très petit volume, et ordinairement sans adhérence des uns aux autres, tandis que les matières uniquement formées par l'intermède de l'eau ne se présentent guère en masses isolées: et en effet, il n'appartient qu'au feu de se former une sphère particulière d'attraction dans laquelle il n'admet les autres éléments qu'autant qu'ils lui conviennent; le diamant et la pyrite sont des corps de feu dans lesquels l'air, la terre, et l'eau, ne sont entrés qu'en quantité suffisante pour retenir et fixer ce premier élément.

Il se trouve des diamants noirs presque opaques, qui n'ont aucune valeur, et qu'on prendroit, au premier coup d'œil, pour des pyrites martiales octaèdres ou cubiques; et ces diamants noirs forment peut-être la nuance entre les pyrites et les pierres précieuses, qui sont également des produits de la terre limoneuse: aucune de ces pierres précieuses n'est attachée aux
rochers, tandis que les cristaux vitreux ou calcaires, formés par l'intermède de l'eau, sont implantés dans les masses qui les produisent, parce que cet élément, qui n'est que passif, ne peut se former, comme le feu, des sphères particulières d'attraction. L'eau ne sert en effet que de véhicule aux parties vitreuses ou calcaires, qui se rassemblent par leur affinité, et ne forment un corps solide que quand cette même eau en est séparée et enlevée par le dessèchement; et la preuve que les pyrites n'ont admis que très peu ou point du tout d'eau dans leur composition, c'est qu'elles en sont avides au point que l'humidité les décompose, et rompt les liens du feu fixe qu'elles renferment. Au reste, il est à croire que dans ces pyrites qui s'effleurissent à l'air, la quantité de l'acide étant proportionnellement trop grande, l'humidité de l'air est assez puissamment attirée par cet acide pour attaquer et pénétrer la substance de la pyrite, tandis que dans les marcassites ou pyrites arsenicales, qui contiennent moins d'acide et sans doute plus de feu que les autres pyrites, l'humidité de l'air ne fait aucun effet sensible: elle en fait encore moins sur le diamant, que rien ne peut dissoudre, décomposer, ou ternir, et que le feu seul peut détruire en mettant en liberté celui que sa substance contient en si grande quantité, qu'elle brûle en entier sans laisser de résidu.

L'origine des vraies pierres précieuses, c'est-à-dire des rubis, topazes, et saphirs d'Orient, est la même que celle des diamants: ces pierres se forment et se trouvent de même dans la terre limoneuse; elles y sont également en petites masses isolées; le feu
qu'elles renferment est seulement en moindre quantité; car elles sont moins dures et en même temps moins combustibles que le diamant, et leur puissance réfractive est aussi de moitié moins grande: ces trois caractères, ainsi que leur grande densité, démontrent assez qu'elles sont d'une essence différente des cristaux vitreux ou calcaires, et qu'elles proviennent, comme le diamant, des extraits les plus purs de la terre végétale.

Dans le soufre et les pyrites, la substance du feu est fixée par l'acide vitriolique; on pourrait donc penser que, dans les pierres précieuses, le feu se trouve fixé de même par cet acide le plus puissant de tous: mais M. Achard a, comme nous l'avons dit¹, tiré de la terre alcaline un produit semblable à celui des rubis qu'il avait soumis à l'analyse chimique, et cette expérience prouve que la terre alcaline peut produire des corps assez semblables à cette pierre précieuse; or l'on sait que la terre végétale et limoneuse est plus alcaline qu'aucune autre terre, puisqu'elle n'est principalement composée que des débris des animaux et des végétaux. Je pense donc que c'est par l'alcali que le feu se fixe dans le diamant et le rubis, comme c'est par l'acide qu'il se fixe dans la pyrite; et même l'alcali, étant plus analogue que l'acide à la substance du feu, doit le saisir avec plus de force, le retenir en plus grande quantité, et s'accumuler en petites masses sous un moindre volume; ce qui, dans la formation de ces pierres, produit la densité, la dureté, la transparence, l'homogénéité, et la combustibilité.

¹. Voyez l'article du Cristal de roche dans le huitième volume de cette Histoire, page 225.
MINÉRAUX.

Mais avant de nous occuper de ces brillants produits de la terre végétale, et qui n'en sont que les extraits ultérieurs, nous devons considérer les concrétions plus grossières et moins épurées de cette même terre réduite en limon, duquel les bols et plusieurs autres substances terreuses ou pierreuses tirent leur origine et leur essence.

BOLS.

On pourra toujours distinguer aisément les bols et terres bolaires des argiles pures, et même des terres glaiseuses, par des propriétés évidentes : les bols et terres bolaires se gonflent très sensiblement dans l'eau, tandis que les argiles s'imbibent sans gonflement apparent ; ils se boursouflent et augmentent de volume au feu : l'argile, au contraire, fait retraite et diminue dans toutes ses dimensions ; les bols enfin se fondent et se convertissent en verre au même degré de feu qui ne fait que cuire et durcir les argiles. Ce sont là les différences essentielles qui distinguent les terres limoneuses des terres argileuses : leurs autres caractères pourroient être équivoques ; car les bols se pétrissent dans l'eau comme les argiles, ils sont de même composés de molécules spongieuses ; leur cassure et leur grain, lorsqu'ils sont desséchés, sont aussi les mêmes ; leur ductilité est à peu près égale ; et tout ceci doit s'entendre des bols comparés aux argiles pures et fines : les glaises ou argiles grossières ne peuvent
être confondues avec les bols, dont le grain est toujours très fin. Mais ces ressemblances des argiles avec les bols n’empêchent pas que leur origine et leur nature ne soient réellement et essentiellement différentes; les argiles, les glaises, les schistes, les ardoises, ne sont que les détritus des matières vitreuses décomposées, et plus ou moins humides ou desséchées, au lieu que les bols sont les produits ultérieurs de la destruction des animaux et des végétaux, dont la substance désorganisée fait le fonds de la terre végétale, qui peu à peu se convertit en limon, dont les parties les plus atténuées et les plus ductiles forment les bols.

Comme cette terre végétale et limoneuse couvre la surface entière du globe, les bols sont assez communs dans toutes les parties du monde; ils sont tous de la même essence, et ne diffèrent que par les couleurs ou la finesse du grain. Le bol blanc paroit être le plus pur de tous; on peut mettre au nombre de ces bols blancs la terre de Pâina, dont on fait au Mogol des vases très minces et très légers: il y a même en Europe de ces bols blancs assez chargés de particules organiques et nutritives pour en faire du pain en les mêlant avec de la farine; enfin l’on peut mettre au nombre de ces bols blancs plusieurs sortes de terres qui nous sont indiquées sous différents noms, la plupart anciens, et que souvent on confond les unes avec les autres.

Le bol rouge tire sa couleur du fer en rouille dont il est plus ou moins mélangé; c’est avec ce bol qu’on prépare la terre sigillée, si fameuse chez les anciens, et de laquelle on faisait grand usage dans la médecine. Cette terre sigillée nous vient aujourd’hui des pays.
orientaux, en pastilles ou en pains convexes d'un côté et aplatis de l'autre, avec l'empreinte d'un cachet que chaque souverain du lieu où il se trouve aujourd'hui de ces sortes de terres y fait apposer moyennant un tribut; ce qui leur a fait donner le nom de terres scellées ou sigillées : on leur a aussi donné les noms de terre de Lemnos, terre bénite de Saint-Paul, terre de Malte, terre de Constantinople. On peut voir dans les anciens historiens avec quelles cérémonies superstitieuses on tiroit ces bols de leurs minières du temps d'Homère, d'Hérodote, de Dioscoride, et de Galien; on peut voir dans les observations de Belon les différences de ces terres sigillées, et ce qui se pratiquoit de son temps pour les extraire et les travailler.

La terre de Guatimala, dont on fait des vases en Amérique, est aussi un bol rougeâtre; il est assez commun dans plusieurs contrées de ce continent, dont les anciens habitants avoient fait des poteries de toutes sortes : les Espagnols ont donné à cette terre cuite le nom de boucaro. Il en est de même du bol d'Arménie et de la terre étusque, dont on a fait anciennement de beaux ouvrages en Italie. On trouve aussi de ces bols plus ou moins colorés de rouge en Allemagne; il y en a même en France, qu'on pourroit peut-être également travailler.

Ces bols blancs, rouges, et jaunes, sont les plus communs : mais il y a aussi des bols verdâtres, tels que la terre de Vérone, qui paroissent avoir reçu du cuivre cette teinture verte; il s'en trouve de cette même couleur en Allemagne, dans le margraviat de Bareith, et les voyageurs en ont rencontré de toutes couleurs en Perse et en Turquie.
La terre de Lemnos, si célèbre chez les anciens peuples du Levant par ses propriétés et vertus médicinales, n’était, comme nous venons de l’indiquer, qu’un bol d’un rouge assez foncé et d’un grain très fin, et l’on peut croire qu’ils l’épuroient encore, et le travaillaient avant d’en faire usage : le bol qu’on nous envoie sous la dénomination de bol d’Arménie ressemble assez à cette terre de Lemnos. Il se trouve aussi en Perse des bols blancs et gris, et l’on en fait des vases pour rafraîchir les liqueurs qu’ils contiennent. Enfin les voyageurs ont aussi reconnu des bols de différentes couleurs à Madagascar, et je suis persuadé que partout où la terre limoneuse se trouve accumulée et en repos pendant plusieurs siècles ses parties les plus fines forment, en se rassemblant, des bols dont les couleurs ne sont dues qu’au fer dissous dans cette terre ; et c’est, à mon avis, de la concrétion endurcie de ces bols que se forment les matières pierreuses dont nous allons parler.

SPATHS PESANTS.

Les pyrites, les spaths pesants, les diamants, et les pierres précieuses, sont tous des corps ignés qui tiennent leur origine de la terre végétale et limoneuse, c’est-à-dire du détriment des corps organisés, lesquels seuls contiennent la substance du feu en assez grande quantité pour être combustibles ou phosphoriques. L’ordre de densité ou de pesanteur spécifique dans les
matières terrestres commence par les métaux, et des-
cend immédiatement aux pyrites qui sont encore
métalliques, et des pyrites passe aux spaths pesants
et aux pierres précieuses. Dans les marcassites et py-
rites, la substance du feu est unie aux acides, et a pour
base une terre métallique; dans les spaths pesants,
cette substance du feu est en même temps unie à l'a-
cide et à l'alcali, et a pour base une terre bulaire ou
limoneuse. La présence de l'alcali combiné avec les
principes du soufre se manifeste par l'odeur qu'exha-
lent ces spaths pesants lorsqu'on les soumet à l'action
du feu; enfin le diamant et les pierres précieuses
sont les extraits les plus purs de la terre limoneuse,
qui leur sert de base, et de laquelle ces pierres tirent
leur phosphorescence et leur combustibilité.

Il ne me paraît pas nécessaire de supposer, comme
l'ont fait nos chimistes récents, une terre particulière
plus pesante que les autres terres, pour définir la na-
ture des spaths pesants: ce n'est point expliquer leur
essence et leur formation, c'est les supposer données
et toutes faites; c'est dire simplement et fort inutile-

1. L'étain, qui est le plus léger des métaux, pèse spécifiquement
72914; le mispickel, ou pyrite arséicaire, qui est la plus pesante des
pyrites, pèse 65225; la pyrite ou marcassite de Dauphiné, dont on
fait des bijoux, des colliers, etc., pèse 49559: la marcassite cubique,
47016; la pyrite globuleuse martiale de Picardie pèse 41006; et la
pyrite martiale cubique de Bourgogne ne pèse que 39000.

La pierre de Bologne, qui est le plus dense des spaths pesants, pèse
44409; le spath pesant blanc, 44500; et le spath pesant trouvé en
Bourgogne à Thôtes près Semur ne pèse que 42687.

Le rubis d'Orient, la plus dense des pierres précieuses, pèse 42858;
et le diamant, quoique la plus dure, est en même temps la plus lé-
gère de toutes les pierres précieuses, et ne pèse que 55212. (Voyez les
Tables de M. Brisson.)
ment que ces spaths sont plus pesants que les autres spaths, parce que leur terre est plus pesante que les autres terres; c'est éluder et reculer la question au lieu de la résoudre; car ne doit-on pas demander pourquoi cette terre est plus pesante, puisque, de l'aveu de ces chimistes, elle ne contient point de parties métalliques? ils seront donc toujours obligés de rechercher avec nous quelles peuvent être les combinaisons des éléments qui rendent ces spaths plus pesants que toutes les autres pierres.

Or, pour se bien conduire dans une recherche de cette espèce et arriver à un résultat conséquent et plausible, il faut d'abord examiner les propriétés absolues et relatives de cette matière pierreuse plus pesante qu'aucune autre pierre; il faut tâcher de reconnaître si cette matière est simple ou composée; car, en la supposant mêlée de parties métalliques, sa pesanteur ne seroit qu'un effet nécessaire de ce mélange; mais, de quelque manière qu'on ait traité ces spaths pesants, on n'en a pas tiré un seul atome de métal; dès lors leur grande densité ne provient pas de la miction d'aucune matière métallique; on a seulement reconnu que les spaths pesants ne sont ni vitreux, ni calcaires, ni gypseux; et comme, après les matières vitreuses, calcaires, et métalliques, il n'existe dans la nature qu'une quatrième matière, qui est la terre limoneuse, on peut déjà présumer que la substance de ces spaths pesants est formée de cette dernière terre, puisqu'ils diffèrent trop des autres terres et pierres pour en provenir ni leur appartenir.

Les spaths pesants, quoique fusibles à un feu vio- lent, ne doivent pas être confondus avec le feld-spath,
non plus qu'avec les spaths auxquels on a donné les
dénominations impropre de spaths vitreux ou fusibles,
c'est-à-dire avec les spaths fluors qui se trouvent assez
souvent dans les mines métalliques : les spaths pesants
et les fluors n'étingissent pas sous le briquet, comme
le feld-spath; mais ils diffèrent entre eux, tant par la
dureté que par la densité : la pesanteur spécifique de
ces spaths fluors n'est que de 30 à 31 mille, tandis
que celle des spaths pesants est de 44 à 45 mille.

La substance des spaths pesants est une terre alcal-
line; et comme elle n'est pas calcaire, elle ne peut
être que limoneuse et bolaire : de plus, cette sub-
stance pesante a autant et peut-être plus d'affinité que
l'alcali même avec l'acide vitriolique; car les seules
matières inflammables ont plus d'affinité que cette
terre avec cet acide.

On trouve assez souvent ces spaths pesants sous
une forme cristallisée; on reconnaît alors aisément
que leur texture est lamelleuse : mais ils se présentent
aussi en cristallisation confuse, et même en masses in-
formes. Ils ne font point partie des roches vitreu-
eses et calcaires, ils n'en tirent pas leur origine; on les
trouve toujours à la superficie de la terre végétale,
on à une assez petite profondeur, souvent en petits
morceaux isolés, et quelquefois en petites veines
comme les pyrites.

En faisant calciner ces spaths pesants, on n'obtient
ni de la chaux ni du plâtre; ils acquièrent seulement
la propriété de luire dans les ténèbres, et pendant la
calcination ils exhalent une forte odeur de foie de sou-
fre, preuve évidente que leur substance contient de
l'alcali uni au feu fixe du soufre: ils diffèrent en cela
des pyrites, dans lesquelles le feu fixe n'est point uni à l'alcali, mais à l'acide. L'essence des spaths pesants est donc une terre alcaline très fortement chargée de la substance du feu; et comme la terre formée du détritum des animaux et végétaux est celle qui contient l'alcali et la substance du feu en plus grande quantité, on doit encore en inférer que ces spaths tirent leur origine de la terre limoneuse ou bolaire, dont les plus fines, entraînées par la stillation des eaux, auront formé cette sorte de stalactite qui aura pris de la consistance et de la densité par la réunion de ces mêmes parties rapprochées de plus près que dans les stalactites vitreuses ou calcaires.

La texture des spaths pesants est lamelleuse comme celle des pierres précieuses; ils ne font de même aucune effervescence avec les acides; ils se présentent rarement en cristallisations isolées; ce sont ordinairement des groupes de cristaux très étroitement unis, et assez irrégulièrement, les uns avec les autres.

Le spath auquel on a donné la dénomination de spath perlé, parce qu'il est luisant et d'un blanc de perle, a été mis mal à propos au nombre des spaths pesants par quelques naturalistes récents; car ce n'est qu'un spath calcaire qui diffère des spaths pesants par toutes ses propriétés: il fait effervescence avec les acides; la densité de ce spath perlé est à peu près égale à celle des autres spaths calcaires\(^1\), et d'un tiers au

\(^1\) La pesanteur spécifique du spath calcaire rhomboïdal, dit cristal d'Islande, est de 2.7151; celle du spath perlé, de 2.8578; tandis que la pesanteur spécifique du spath pesant octaèdre est de 4.4712; et celle du spath pesant, dit pierre de Bologne, est de 4.4709. (Voyez les Tables de M. Brisson.)
dessous de celle des spaths pesants; de plus, sa forme de cristallisation est semblable à celle du spath calcaire; il se convertit de même en chaux: il n'est donc pas douteux que ce spath perlé ne doive être séparé des spaths pesants et réuni aux autres spaths calcaires.

Les spaths pesants sont plus souvent opaques que transparents; et comme je soupçonneais, par leurs autres rapports avec les pierres précieuses, qu'ils ne devaient offrir qu'une simple réfraction, j'ai prié M. l'abbé Rochon d'en faire l'expérience, et il a en effet reconnu que ces spaths n'ont point de double réfraction; leur essence est donc homogène et simple comme celle du diamant et des pierres précieuses, qui n'offrent aussi qu'une simple réfraction: les spaths pesants leur ressemblent par cette propriété, qui leur est commune et qui n'appartient à aucune autre pierre transparente; ils en approchent aussi par leur densité, qui néanmoins est encore un peu plus grande que celle du rubis: mais, avec cette homogénéité et cette grande densité, les spaths pesants n'ont pas à beaucoup près autant de dureté que les pierres précieuses.

Les spaths pesants opaques ou transparents sont ordinairement d'un blanc mat; cependant il s'en trouve quelques uns qui ont des teintes d'un rouge ou d'un jaune léger, et d'autres qui sont verdâtres ou bleuâtres: ces différentes couleurs proviennent, comme dans les autres pierres colorées, des vapeurs ou dissolutions métalliques qui, dans de certains lieux, ont pénétré la terre limoneuse et teint les stalactites qu'elle produit.

Le spath pesant le plus anciennement connu est la pierre de Bologne; elle se présente souvent en forme
globuleuse, et quelquefois aplatie ou allongée comme un cylindre : son tissu lamelleux la rend chatoyante à sa surface ; dans cet état on ne peut guère la distinguer des autres pierres feuilletées que par sa forte pesanteur. Le comte Marsigli et Mentzelius ont fait sur cette pierre de bonnes observations, et ils ont indiqué les premiers la manière de la préparer pour en faire des phosphores qui conservent la lumière et la rendent au dehors pendant plusieurs heures.

Tous les spaths pesants ont la même propriété, et cette phosphorescence les rapproche encore des diamants et des pierres précieuses, qui reçoivent, conservent, et rendent dans les ténèbres la lumière du soleil, et même celle du jour, dont une partie paroit se fixer pour un petit temps dans leur substance, et les rend phosphoriques pendant plusieurs heures.

Les pierres précieuses et les spaths pesants ont donc tant de rapports et de propriétés communes, qu’on ne peut guère douter que le fonds de leur essence ne soit de la même nature ; la densité, la simple réfraction ou l’homogénéité, la phosphorescence, leur formation et leur gisement dans la terre limoneuse, sont des caractères et des circonstances qui semblent démontrer leur origine commune, et les séparer en même temps de toutes les matières vitreuses, calcaires, et métalliques.
PIERRES PRÉCIEUSES.

Les caractères par lesquels on doit distinguer les vraies pierres précieuses de toutes les autres pierres transparentes sont la densité, la dureté, l'infusibilité, l'homogénéité, et la combustibilité; elles n'ont qu'une simple réfraction, tandis que toutes les autres, sans aucune exception, ont au moins une double réfraction, et quelquefois une triple, quadruple, etc. Ces pierres précieuses sont en très petit nombre; elles sont spécifiquement plus pesantes, plus homogènes et beaucoup plus dures que tous les cristaux et les spaths; leur réfraction simple démontre qu'elles ne sont composées que d'une seule substance d'égale densité dans toutes ses parties, au lieu que les cristaux et tous les autres extraits des verres primitifs et des matières calcaires, pures ou mélangées, ayant une double réfraction, sont évidemment composés de lames ou couches alternatives de différente densité: nous avons donc exclu du nombre des pierres précieuses les améthystes, les topazes de Saxe et du Brésil, les émeraudes et péridots, qu'on a jusqu'ici regardés comme tels parce que l'on ignorait la différence de leur origine et de leurs propriétés. Nous avons démontré que toutes ces pierres ne sont que des cristaux et des produits des verres primitifs, dont elles conservent les propriétés essentielles: les vraies
PIERRES PRÉCIEUSES.

pie\[464]res précieuses, telles que le diamant, le rubis, la topaze, et le saphir d'Orient, n'ayant qu'une seule réfraction, sont évidemment homogènes dans toutes leurs parties, et en même temps elles sont beaucoup plus dures et plus denses que toutes ces pierres qui tirent leur origine des matières vitreuses.

On savoit que le diamant est de toutes les matières transparentes celle dont la réfraction est la plus forte, et M. l'abbé Rochon, que j'ai déjà eu occasion de citer avec éloge, a observé qu'il en est de même des rubis, de la topaze, et du saphir d'Orient; ces pierres, quoique plus denses que le diamant, sont néanmoins également homogènes, puisqu'elles ne donnent qu'une simple réfraction. D'après ces caractères, qu'on n'avoit pas saisis, quoique très essentiels, et mettant pour un moment le diamant à part, nous nous croyons fondés à réduire les vraies pierres précieuses aux variétés suivantes, savoir: le rubis proprement dit, le rubis balais, le rubis spinelle, la vermeille, la topaze, le saphir, et le girasol; ces pierres sont les seules qui n'offrent qu'une simple réfraction. Le balais n'est qu'un rubis d'un rouge plus clair, et le spinelle un rubis d'un rouge plus foncé; la vermeille n'est aussi qu'un rubis dont le rouge est mêlé d'orangé, et le girasol un saphir dont la transparence est nébuleuse et la couleur bleue teinte d'une nuance de rouge: ainsi les rubis, topazes, et saphirs, n'ayant qu'une simple réfraction, et étant en même temps d'une densité beaucoup plus grande que les extraits des verres primitifs, on doit les séparer des matières transparentes vitreuses, et leur donner une tout autre origine.

Et quoique le grenat et l'hyacinthe approchent des
pierres précieuses par leur densité, nous n'avons pas cru devoir les admettre dans leur nombre, parce que ces pierres sont fusibles, et qu'elles ont une double réfraction assez sensible pour démontrer que leur substance n'est point homogène, et qu'elles sont composées de deux matières d'une densité différente; leur substance paroît aussi être mêlée de parties métalliques. On pourra me dire que les rubis, topazes, saphirs, et même les diamants colorés, ne sont teints, comme le grenat et l'hyacinthe, que par les parties métalliques qui sont entrées dans leur composition; mais nous avons déjà démontré que ces molécules métalliques qui colorent les cristaux et autres pierres transparentes sont en si petite quantité, que la densité de ces pierres n'en est point augmentée. Il en est de même des diamants de couleur, leur densité est la même que celle des diamants blancs; et ce qui prouve que, dans les hyacinthes et les grenats, les parties hétérogènes et métalliques sont en bien plus grande quantité que dans ces pierres précieuses, c'est qu'ils donnent une double réfraction: ces pierres sont donc réellement composées de deux matières de densité différente, et elles auront reçu non seulement leur teinture comme les autres pierres de couleur, mais aussi leur densité et leur double réfraction par le mélange d'une grande quantité de particules métalliques. Nos pierres précieuses blanches ou colorées n'ont, au contraire, qu'une seule réfraction: preuve évidente que la couleur n'altère pas sensiblement la simplicité de leur essence. La substance de ces pierres est homogène dans toutes ses parties; elle n'est pas composée de couches alternatives de matière plus ou moins
dense, comme celle des autres pierres transparentes, qui toutes donnent une double réfraction.

La densité de l'hyacinthe, quoique moindre que celle du grenat, surpasse encore la densité du diamant; on pourrait donc mettre l'hyacinthe au rang des pierres précieuses, si sa réfraction étoit simple et aussi forte que celle de ces pierres; mais elle est double et faible, et d'ailleurs sa couleur n'est pas franche: ainsi ces imperfections indiquent assez que son essence n'est pas pure. On doit observer aussi que l'hyacinthe ne brûle qu'à sa surface et par la réflexion de la lumière, tandis que les vraies pierres précieuses brillent encore plus par la réfraction intérieure que par le reflet extérieur de la lumière. En général, dès que les pierres sont nuageuses et même chatoyantes, leurs reflets de couleurs ne sont pas purs, et l'intensité de leur lumière réfléchie ou réfractée est toujours faible, parce qu'elle est plutôt dispersée que rassemblée.

On peut donc assurer que le premier caractère des vraies pierres précieuses est la simplicité de leur essence ou l'homogénéité de leur substance, qui se démontre par leur réfraction toujours simple, et que les deux autres caractères qu'on doit réunir au premier sont leur densité et leur dureté beaucoup plus grandes que celles d'aucun des verres ou matières vitreuses produites par la nature: on ne peut donc pas soutenir que ces pierres précieuses tirent leur origine, comme les cristaux, de la décomposition de ces verres primitifs, ni qu'elles en soient des extraits; et certainement elles proviennent encore moins de la décomposition des spaths calcaires, dont la densité est à peu près la
même que celle des verres primitifs 1, et qui d'ailleurs se réduisent en chaux au lieu de se fondre ou de brûler. Ces pierres précieuses ne peuvent de même provenir de la décomposition des spaths fluors, dont la pesanteur spécifique est à peu près égale à celle des schorls 2, et je ne vois dans la nature que les spaths pesants dont la densité puisse se comparer à celle des pierres précieuses : la plus dense de toutes est le rubis d'Orient, dont la pesanteur spécifique est de \(\frac{42855}{4} \); et celle du spath pesant appelé pierre de Bologne est de \(\frac{44409}{4} \); celle du spath pesant octaèdre est de \(\frac{44712}{4} \) : on doit donc croire que les pierres précieuses ont quelque rapport d'origine avec ces spaths pesants, d'autant mieux qu'elles s'imbibent de lumière et qu'elles la conservent pendant quelque temps comme les spaths pesants. Mais ce qui démontre invinciblement que ni les verres primitifs, ni les substances calcaires, ni les spaths fluors, ni même les spaths pesants, n'ont produit les pierres précieuses, c'est que toutes ces matières se trouvent à peu près également dans toutes les régions du globe, tandis que les diamants et les pierres précieuses ne se rencontrent que dans les climats les plus chauds : preuve certaine que, de quelque matière qu'elles tirent leur

1. Les pesanteurs spécifiques du quartz sont de \(\frac{26546}{5} \); du feldspath, \(\frac{26466}{5} \); du mica blanc, \(\frac{27644}{5} \); et la pesanteur spécifique du spath calcaire (cristal d'Islande) est de \(\frac{27151}{5} \); et celle du spath perlé, de \(\frac{28578}{5} \). (Tables de M. Brisson.)

2. La pesanteur spécifique du spath phosphorique cubique blanc est de \(\frac{51655}{5} \); celle du spath phosphorique cubique violet, de \(\frac{51757}{5} \); du spath phosphorique d'Auvergne, de \(\frac{50945}{5} \); et la pesanteur spécifique du schorl cristallisé est de \(\frac{50926}{5} \); du schorl violet de Dauphiné, de \(\frac{52956}{5} \). (Tables de M. Brisson.)
origine, cet excès de chaleur est nécessaire à leur production.

Mais la chaleur réelle de chaque climat est composée de la chaleur propre du globe et de l'accession de la chaleur envoyée par le soleil; l'une et l'autre sont plus grandes entre les tropiques que dans les zones tempérées et froides: la chaleur propre du globe y est plus forte, parce que le globe étant plus épais à l'équateur qu'aux pôles, cette partie de la terre a conservé plus de chaleur, puisque la déperdition de cette chaleur propre du globe s'est faite, comme celle de tous les autres corps chauds, en raison inverse de leur épaisseur. D'autre part, la chaleur qui arrive du soleil avec la lumière est, comme l'on sait, considérablement plus grande sous cette zone torride que dans les autres climats, et c'est de la somme de ces deux chaleurs toujours réunies qu'est composée la chaleur locale de chaque région. Les terres sous l'équateur jusqu'aux deux tropiques souffrent, par ces deux causes, un excès de chaleur qui influe non seulement sur la nature des animaux, des végétaux, et de tous les êtres organisés, mais agit même sur les matières brutes, particulièrement sur la terre végétale, qui est la couche la plus extérieure du globe: aussi les diamants, rubis, topazes, et saphirs, ne se trouvent qu'à la surface ou à de très petites profondeurs dans le terrain de ces climats très chauds; il ne s'en rencontre dans aucune autre région de la terre. Le seul exemple contraire à cette exclusion générale est le saphir du Puy en Velay, qui est spécifiquement aussi et même un peu plus pesant que le saphir d'O-
rient, et qui prend, dit-on, un aussi beau poli; mais j'ignore s'il n'a de même qu'une simple réfraction, et par conséquent si l'on doit l'admettre au rang des vraies pierres précieuses, dont la plus brillante propriété est de réfracter puissamment la lumière et d'en offrir les couleurs dans toute leur intensité: la double réfraction décolore les objets, et diminue par conséquent plus ou moins cette intensité dans les couleurs, et dès lors toutes les matières transparentes qui donnent une double réfraction ne peuvent avoir autant d'éclat que les pierres précieuses dont la substance ainsi que la réfraction sont simples.

Car il faut distinguer, dans la lumière réfractée par les corps transparents, deux effets différents, celui de la réfraction et celui de la dispersion de cette même lumière: ces deux effets ne suivent pas la même loi, et paroissent même être en raison inverse l'un à l'autre; car la plus petite réfraction se trouve accompagnée de la plus grande dispersion, tandis que la plus grande réfraction ne donne que la plus petite dispersion. Le jeu des couleurs qui provient de cette dispersion de la lumière est plus varié dans les stras, verres de plomb ou d'antimoine, que dans le diamant; mais ces couleurs des stras n'ont que très peu d'intensité en comparaison de celles qui sont produites par la réfraction du diamant.

La puissance réfractive est beaucoup plus grande dans le diamant que dans aucun autre corps transpa-

1. La pesanteur spécifique du saphir d'Orient bleu est de 59941; du saphir d'Orient blanc, de 59911; et la pesanteur spécifique du saphir du Puy est de 40769. (Tables de M. Brisson.)
rent : avec des prismes dont l'angle est de 20 degrés. la réfraction du verre blanc est d'environ 10 $\frac{1}{2}$; celle du flint-glass, de 11 $\frac{1}{2}$; celle du cristal de roche n'est tout au plus que de 10 $\frac{1}{2}$; celle du spath d'Islande d'environ 11 $\frac{1}{2}$; celle du péridot de 11; tandis que la réfraction du saphir d'Orient est entre 14 et 15, et que celle du diamant est au moins de 30. M. l'abbé Rochon, qui a fait ces observations, présume que la réfraction du rubis et de la topaze d'Orient est aussi entre 14 et 15, comme celle du saphir; mais il me semble que ces deux premières pierres ayant plus d'éclat que la dernière, on peut penser qu'elles ont aussi une réfraction plus forte et un peu moins éloignée de celle du diamant : cette grande force de réfraction produit la vivacité, ou, pour mieux dire, la forte intensité des couleurs dans le spectre du diamant, et c'est précisément parce que ses couleurs conservent toute leur intensité que leur dispersion est moindre. Le fait confirme ici la théorie, car il est aisé de s'assurer que la dispersion de la lumière est bien plus petite dans le diamant que dans aucune autre matière transparente.

Le diamant, les pierres précieuses, et toutes les substances inflammables, ont plus de puissance réfractive que les autres corps transparents, parce qu'elles ont plus d'affinité avec la lumière; et par la même raison il y a moins de dispersion dans leur réfraction, puisque leur plus grande affinité avec la lumière doit en réunir les rayons de plus près. Le verre d'antimoine peut ici nous servir d'exemple; sa réfraction n'est que d'environ 11 $\frac{1}{2}$, tandis que sa dispersion est encore plus grande que celle du stras ou d'aucune
MINÉRAUX.

autre matière connue, en sorte qu'on pourroit égaler et peut-être surpasser le diamant pour le jeu des couleurs avec le verre d'antimoine : mais ces couleurs ne seraient que des bluettes encore plus foibles que celles du stras ou verre de plomb ; et d'ailleurs ce verre d'antimoine est trop tendre pour pouvoir conserver long-temps son poli.

Cette homogénéité dans la substance du diamant et des pierres précieuses, qui nous est démontrée par leur réfraction toujours simple, cette grande densité que nous leur connaissons par la comparaison de leurs poids spécifiques, enfin leur très grande dureté qui nous est également démontrée par leur résistance au frottement de la lime, sont des propriétés essentielles qui nous présentent des caractères tirés de la nature, et qui sont bien plus certains que tous ceux par lesquels on a voulu désigner et distinguer ces pierres : ils nous indiquent leur essence, et nous démontrent en même temps qu'elles ne peuvent provenir des matières vitreuses, calcaires, ou métalliques, et qu'il ne reste que la terre végétale ou limoneuse dont le diamant et les vraies pierres précieuses aient pu tirer leur origine. Cette présomption très bien fondée acquerra le titre de vérité lorsqu'on réfléchira sur deux faits généraux également certains : le premier, que ces pierres ne se trouvent que dans les climats les plus chauds, et que cet excès de chaleur est par conséquent nécessaire à leur formation ; le second, qu'on ne les rencontre qu'à la surface ou dans la première couche de la terre et dans le sable des rivières, où elles ne sont qu'en petites masses isolées, et souvent recouvertes d'une terre limoneuse ou bolaire,
PIERRES PRÉCIEUSES.

mais jamais attachées aux rochers, comme le sont les cristaux des autres pierres vitreuses ou calcaires.

D'autres faits particuliers viendront à l'appui de ces faits général, et l'on ne pourra guère se refuser à croire que les diamants et autres pierres précieuses ne soient en effet des produits de la terre limoneuse, qui, conservant plus qu'aucune autre matière la substance du feu des corps organisés dont elle recueille les détriments, doit produire et produit réellement partout des concrétions combustibles et phosphoriques, telles que les pyrites, les spaths pesants, et peut par conséquent former des diamants également phosphoriques et combustibles dans les lieux où le feu fixe contenu dans cette terre est encore aidé par la grande chaleur du globe et du soleil.

Pour répondre d'avance aux objections qu'on pourroit faire contre cette opinion, nous conviendrons volontiers que ces saphirs trouvés au Puy en Velay, dont la densité est égale à celle du saphir d'Orient, semblent prouver qu'il se rencontre au moins quelqu'une des pierres que j'appelle précieuses dans les climats tempérés; mais ne devons-nous pas en même temps observer que, quand il y a eu des volcans dans cette région tempérée, le terrain peut en être pendant long-temps aussi chaud que celui des régions du midi? Le Velay en particulier est un terrain volcanisé, et je ne suis pas éloigné de penser qu'il peut se former dans ces terrains, par leur excès de chaleur, des pierres précieuses de la même qualité que celles qui se forment par le même excès de chaleur dans les climats voisins de l'équateur, pourvu néanmoins que cet excès de chaleur dans les terrains volcanisés
soit constant, ou du moins assez durable et assez uni-
formément soutenu pour donner le temps nécessaire
à la formation de ces pierres. En général, leur dureté
nous indique que leur formation exige beaucoup de
temps; et les terres volcanisées ne conservant pas
leur excès de chaleur pendant plusieurs siècles, il ne
doit pas s'y former de diamants, qui de toutes les
pierres sont les plus dures, tandis qu'il peut s'y for-
mer des pierres transparentes moins dures. Ce n'est
donc que dans le cas très particulier où la terre vé-
gétale conserveroit cet excès de chaleur pendant une
longue suite de temps qu'elle pourrait produire ces
stalactites précieuses dans un climat tempéré ou froid,
et ce cas est infiniment rare et ne s'est jusqu'ici pré-
senté qu'avec le saphir du Puy.

On pourra me faire une autre objection : D'après
votre système, me dira-t-on, toutes les parties du
globe ont joui de la même chaleur dont jouissent au-
jourd'hui les régions voisines de l'équateur; il a donc
dû se former des diamants et autres pierres précieus-
es dans toutes les régions de la terre, et l'on devroit
y trouver quelques unes de ces anciennes pierres qui
par leur essence résistent aux injures de tous les élé-
ments : néanmoins on n'a nulle part, de temps immé-
orial, ni vu ni rencontré un seul diamant dans
aucune des contrées froides ou tempérées. Je réponds
en convenant qu'il a dû se former en effet des dia-
mants dans toutes les régions du globe lorsqu'elles
jouissoient de la chaleur nécessaire à cette produc-
tion; mais comme ils ne se trouvent que dans la pre-
mière couche de la terre, et jamais à de grandes pro-
fondeurs, il est plus que probable que les diamants
et les autres pierres précieuses ont été successivement recueillies par les hommes, de la même manière qu’ils ont recueilli les pépites d’or et d’argent, et mêmes les blocs de cuivre primitif, lesquels ne se trouvent plus dans les pays habités, parce que toutes ces matières brillantes ou utiles ont été recherchées ou consommées par les anciens habitants de ces mêmes contrées.

Mais ces objections et les doutes qu’elles pourraient faire naître doivent également disparaître à la vue des faits et des raisons qui démontrent que les diamants, les rubis, topazes, et saphirs, ne se trouvent qu’entre les tropiques, dans la première et la plus chaude couche de la terre, et que, ces mêmes pierres étant d’une densité plus grande et d’une essence plus simple que toutes les autres pierres transparentes vitreuses ou calcaires, on ne peut leur donner d’autre origine, d’autre matrice, que la terre limoneuse, qui, rassemblant les débris des autres matières, et n’étant principalement composée que du détriment des êtres organisés, a pu seule former des corps pleins de feu, tels que les pyrites, les spaths pesants, les diamants, et autres concrétions phosphoriques, brillantes, et précieuses; et ce qui vient victorieusement à l’appui de cette vérité, c’est le fait bien avéré du phosphorisme et de la combustion du diamant. Toute matière combustible ne provient que des corps organisés ou de leurs détritus; et dès lors le diamant, qui s’imbibe de lumière, et qu’on a été forcé de mettre au nombre des substances combustibles, ne peut provenir que de la terre végétale, qui seule contient les débris combustibles des corps organisés.
J'avoue que la terre végétale et limoneuse est encore plus impure et moins simple que les matières vitreuses, calcaires, et métalliques; j'avoue qu'elle est le réceptacle général et commun des poussières de l'air, de l'égout des eaux, et de tous les détriments des métaux et des autres matières dont nous faisons usage: mais le fonds principal qui constitue son essence n'est ni métallique, ni vitreux, ni calcaire; il est plutôt igné; c'est le résidu, ce sont les détriments des animaux et des végétaux dont sa substance est spécialement composée: elle contient donc plus de feu fixe qu'aucune autre matière. Les bitumes, les huiles, les graisses, toutes les parties des animaux et des végétaux qui se sont converties en tourbe, en charbon, en limon, sont combustibles, parce qu'elles proviennent des corps organisés. Le diamant, qui de même est combustible, ne peut donc provenir que de cette même terre végétale, d'abord animée de son propre feu, et ensuite aidée d'un surplus de chaleur qui n'existe actuellement que dans les terres de la zone torride.

Les diamants, les rubis, la topaze, et le saphir, sont les seules vraies pierres précieuses, puisque leur substance est parfaitement homogène, et qu'elles sont en même temps plus dures et plus denses que toutes les autres pierres transparentes; elles seules, par toutes ces qualités réunies, méritent cette dénomination. Elles ne peuvent provenir des matières vitreuses, et encore moins des substances calcaires ou métalliques; d'où l'on doit conclure par exclusion, et indépendamment de toutes nos preuves positives, qu'elles ne doivent leur origine qu'à la terre limo-
neuse, puisque toutes les autres matières n'ont pu les produire.

DIAMANT.

J'ai cru pouvoir avancer et même assurer, quelque temps avant qu'on en eût fait l'épreuve, que le diamant étoit une substance combustible : ma proposition étoit fondée sur ce qu'il n'y a que les matières inflammables qui donnent une réfraction plus forte que les autres, relativement à leur densité respective. La réfraction de l'eau, du verre, et des autres matières transparentes solides ou liquides, est toujours, et dans toutes, proportionnelle à leur densité; tandis que dans le diamant, les huiles, l'esprit-de-vin, et les autres substances solides ou liquides qui sont inflammables ou combustibles, la réfraction est toujours beaucoup plus grande relativement à leur densité. Mon opinion au sujet de la nature du diamant, quoique fondée sur une analogie aussi démonstrative, a été contredite jusqu'à ce que l'on ait vu le diamant brûler et se consumer en entier au foyer du miroir ardent. La main n'a donc fait ici que confirmer ce que la vue de l'esprit avait aperçu; et ceux qui ne croient que ce qu'ils voient seront dorénavant convaincus qu'on peut deviner les faits par l'analogie, et que le diamant, comme toutes les autres pierres transparentes.

BUFFON. IX.
tes solides ou liquides dont la réfraction est, relativement à leur densité, plus grande qu'elle ne doit être, sont réellement des substances inflammables ou combustibles.

En considérant ces rapports de la réfraction et de la densité, nous verrons que la réfraction de l'air, qui de toutes est la moindre, ne laisse pas que d'être trop grande relativement à la densité de cet élément ; et cet excès ne peut provenir que de la quantité de matière combustible qui s'y trouve mêlée, et à laquelle on a donné dans ces derniers temps la dénomination d'air inflammable : c'est en effet cette portion de substance inflammable mêlée dans l'air de l'atmosphère, qui lui donne cette réfraction plus forte relativement à sa densité. C'est aussi cet air inflammable qui produit souvent dans l'atmosphère des phénomènes de feu. On peut employer cet air inflammable pour rendre nos feux plus actifs ; et quoiqu'il ne réside qu'en très petite quantité dans l'air atmosphérique, cette petite quantité suffit pour que la réfraction en soit plus grande qu'elle ne le seroit si l'atmosphère étoit privée de cette portion de matière combustible.

On a d'abord cru que le diamant exposé à l'action d'un feu violent se dissipoit et se volatilisoit sans souffrir une combustion réelle : mais des expériences bien faites et très multipliées ont démontré que ce n'est pas en se dispersant ou se volatilisant, mais en brûlant comme toute autre matière inflammable, que le diamant se détruit au feu libre et animé par le contact de l'air.

1. J'ai composé en 1770 le premier volume de mes suppléments. Comme je ne m'occupois pas alors de l'histoire naturelle des pierres,
DIAMANT.

On n'a pas fait sur le rubis, la topaze, et le saphir, autant d'épreuves que sur les diamants. Ces pierres doivent être moins combustibles, puisque leur réfraction est moins forte que celle du diamant, quoique relativement à leur densité cette réfraction soit plus grande, comme dans les autres corps inflammables ou combustibles : et en effet, on a brûlé le rubis au foyer du miroir ardent ; on ne peut guère douter que la topaze et le saphir, qui sont de la même essence, ne soient également combustibles. Ces pierres précieuses sont, comme les diamants, des produits de la terre limoneuse, puisqu'elles ne se trouvent, comme le diamant, que dans les climats chauds, et qu'attendaient leur grande densité et leur dureté elles ne peuvent provenir des matières vitreuses, calcaires, et métalliques ; que de plus elles n'ont de même qu'une simple réfraction trop forte relativement à leur densité, et qu'il faut seulement leur appliquer un feu encore plus violent qu'au diamant pour opérer leur

et que je n'avais pas fait de recherches historiques sur cet objet, j'ignorais que dès le temps de Boyle on avait fait en Angleterre des expériences sur la combustion du diamant, et qu'ensuite on les avait répétées avec succès en Italie et en Allemagne : mais MM. Macquer, Darcet, et quelques autres savants chimistes, qui douteaient encore du fait, s'en sont convaincus. MM. de Lavoisier, Cadet, et Mitouard, ont donné sur ce sujet un très bon Mémoire en 1772, dans lequel on verra que des diamants de toutes couleurs, mis dans un vaisseau parfaitement clos, ne souffrent aucune perte ni diminution de poids, ni par conséquent aucun effet de la combustion, quoique le vaisseau qui les renferme fût exposé à l'action du feu le plus violent *. Ainsi le diamant ne se décompose ni ne se volatilise en vaisseaux clos, et il faut l'action de l'air libre pour opérer sa combustion.

* Mémoire de MM. Lavoisier et Cadet, Académie des Sciences, année 1772.
combustion; car leur force réfractive n'étant que de 15, tandis que celle du diamant est de 50, et leur densité étant plus grande d'environ un septième que celle du diamant, elles doivent contenir proportionnellement moins de parties combustibles, et résister plus long-temps et plus puissamment à l'action du feu, et brûler moins complètement que le diamant, qui ne laisse aucun résidu après sa combustion.

On sentira la justesse de ces raisonnements en se souvenant que la puissance réfractive des corps transparents devient d'autant plus grande qu'ils ont plus d'affinité avec la lumière; et l'on ne doit pas douter que ces corps ne contractent cette plus forte affinité par la plus grande quantité de feu qu'ils contiennent; car le feu fixe agit sur le feu libre de la lumière, et rend la réfraction des substances combustibles d'autant plus forte qu'il réside en plus grande quantité dans ces mêmes substances.

On trouve les diamants dans les contrées les plus chaudes de l'un et l'autre continent; ils sont également combustibles. Les uns et les autres n'offrent qu'une simple et très forte réfraction; cependant la densité et la dureté du diamant d'Orient surpassent un peu celles du diamant d'Amérique 1. Sa réfraction

1. La pesanteur spécifique du diamant blanc oriental octaèdre est de 55212; celle du diamant oriental couleur de rose, de 55510; et la pesanteur spécifique du diamant dodécaèdre du Brésil n'est que de 54444. (Tables de M. Brisson.)

Cette estimation ne s'accorde pas avec celle que M. Eillicot a donnée dans les Transactions philosophiques, année 1745, n° 176. La pesanteur spécifique du diamant d'Orient est, selon lui, de 5517; et celle du diamant du Brésil, de 5515; différence si petite qu'on pouvait la regarder comme nulle; mais connaissance l'exactitude de M. Brisson,
paroît aussi plus forte et son éclat plus vif ; il se cristallise en octaèdre, et celui du Brésil en dodécaèdre ; ces différences doivent en produire dans leur éclat ; et je suis persuadé qu’un œil bien exercé pourrait les distinguer.

M. Dufay, savant physicien, de l’Académie des Sciences, et mon très digne prédécesseur au Jardin du Roi, ayant fait un grand nombre d’expériences sur des diamants de toutes couleurs, a reconnu que tous n’avoient qu’une simple réfraction à peu près égale ; il a vu que leurs couleurs, quoique produites par une matière métallique, n’étoient pas fixes, mais volatiles, parce que ces couleurs disparaissent en faisant chauffer fortement ces diamants colorés dans une pâte de porcelaine. Il s’est aussi assuré, sur un grand nombre de diamants, que les uns conservoient plus long-temps et rendoient plus vivement que les autres la lumière dont ils s’imbibent, lorsqu’on les expose aux rayons du soleil ou même à la lumière du jour. Ces faits sont certains : mais je me rappelle que, m’ayant communiqué ses observations, il m’assura positivement que les diamants naturels qu’on appelle pointes naïves ou natives, et qui n’ont pas été taillés, sont tous cristallisés en cubes. Je n’imagine pas comment il a pu se tromper sur cela, car personne n’a peut-être manié autant de diamants taillés ou bruts ; il avoit et la précision avec laquelle il fait ses expériences, je crois que nous devons nous en tenir à sa détermination. Cependant on doit croire qu’il y a, tant en Orient qu’au Brésil, des diamants spécifiquement plus pesants les uns que les autres, et que probablement M. Ellicot aura comparé le poids spécifique d’un des plus pesants du Brésil avec un des moins pesants d’Orient.
emprunté les diamants de la couronne et ceux de nos princes pour ses expériences; et, d'après cette assertion de M. Dufay, je doute encore que les diamants de l'ancien continent soient tous octaèdres, et ceux du Brésil tous dodécaèdres. Cette différence de forme n'est probablement pas la seule, et semble nous indiquer assez qu'il peut se trouver dans les diamants d'autres formes de cristallisation, dont M. Dufay assurait que la cubique était la plus commune. M. Dau-benton, de l'Académie des Sciences, et garde du Cabinet du Roi, a bien voulu me communiquer les recherches ingénieuses qu'il a faites sur la structure du diamant; il a reconnu que les huit faces triangulaires du diamant octaèdre brut sont partagées par des arêtes, en sorte que ces faces triangulaires sont convexes à leur surface 1. Ce savant naturaliste a aussi ob-

1. On aperçoit, sur chacune des huit faces du diamant brut, trois lignes qui sont renflées comme de petites veines, et qui s'étendent chacune depuis l'un des angles du triangle jusqu'au milieu des côtés opposés, ce qui forme six petits triangles dans le grand, en sorte qu'il y a quarante-huit compartiments sur la surface entière du diamant brut, que l'on peut réduire à vingt-quatre, parce que les compartiments qui sont de chaque côté des arêtes du diamant brut ne sont pas séparés l'un de l'autre par une pareille arête, mais simplement par une veine: ces veines sont les jointures de l'extrémité des lames dont le diamant est composé. Le diamant est en effet formé de lames qui se séparent et s'exfolient par l'action du feu.

Le fil du diamant est le sens dans lequel il faut le frotter pour le polir: si on le frottoit à contre-sens, les lames qui sont superposées les unes sur les autres, comme les feuilles d'un livre, se replieroient ou s'égrèneroient, parce qu'elles ne seroient pas frottées dans le sens qu'elles sont couchées les unes sur les autres.

Pour polir le diamant, il ne suffit pas de suivre le sens des lames superposées les unes sur les autres en les frottant du haut en bas; mais il faut encore suivre la direction des fibres dont ces mêmes lames sont
servé que la précision géométrique de la figure ne se trouve pas plus dans l'octaèdre du diamant que dans les autres cristallisations, et qu'il y a plus de diamants irréguliers que de régulièrement octaèdres, et que non seulement la figure extérieure de la plupart des diamants est sujette à varier, mais qu'il y a aussi des diamants dont la structure intérieure est irrégulière 4.

Les caractères que l'on voudroit tirer des formes de la cristallisation seront donc toujours équivoques, fautifs, et nous devons nous en tenir à ceux de la densité, de la dureté, de l'homogénéité, de la fusibilité, et de la combustibilité, qui sont non seulement les vrais caractères, mais même les propriétés essentielles de toute substance, sans négliger néanmoins les qualités accidentelles, comme celles de se cristalliser plus ordinairement sous telle ou telle forme, de s'imbibier composées : la direction de ces fibres est parallèle à la base de chaque triangle ; en sorte que lorsqu'on veut polir à la fois deux triangles des quarante-huit dont nous avons parlé, et suivre en même temps le fil du diamant, il faut diriger le frottement en deux sens contraires, et toujours parallèlement à la base de chaque triangle.

Chaque lame est pliée en deux parties égales pour former une arête de l'octaèdre : et par leur superposition des unes sur les autres, ces lames ne peuvent recevoir le poli que dans le sens où le frottement se fait de haut en bas du triangle, c'est-à-dire en passant successivement d'une lame plus courte à une lame plus longue. (Note communiquée par M. Daubenton.)

1. Lorsque cette irrégularité est grande, les diamantaires ne peuvent suivre aucune règle pour les polir, et c'est ce qu'ils appellent diamants de nature, qu'ils ne font quuser et échauffer sans les polir, parce que les lames étant irrégulièrement superposées les unes sur les autres, elles ne présentent aucun sens continu dans lequel on puisse les frotter. — On ne peut juger les diamants que lorsque leurs surfaces sont naturellement brillantes, ou lorsqu'on les a polis par l'art. (Suite de la note communiquée par M. Daubenton.)
de lumière, de perdre ou d’acquérir la couleur par l’action du feu, etc.

Le diamant, quoique moins dense que le rubis, la topaze et le saphir, est néanmoins plus dur; il agit aussi plus puissamment sur la lumière, qu’il reçoit, réfracte et réfléchit beaucoup plus fortement: exposé à la lumière du soleil ou du jour, il s’imbibe de cette lumière et la conserve pendant quelque temps; il devient aussi lumineux lorsqu’on le chauffe ou qu’on le frotte contre toute autre matière; il acquiert plus de vertu électrique par le frottement que les autres pierres transparentes: mais chacune de ces propriétés ou qualités varie du plus au moins dans les diamants comme dans toutes les autres productions de la nature, dont aucune qualité particulière n’est absolue. Il y a des diamants, des rubis, etc., plus durs les uns que les autres; il s’en trouve de plus ou moins phosphoriques, de plus ou moins électriques; et quoique le diamant soit la pierre la plus parfaite de toutes, il ne laisse pas d’être sujet, comme les autres, à un grand nombre d’imperfections et même de défauts.

La première de ces imperfections est la couleur; car, quoique à cause de la rareté on fasse cas des diamants colorés, ils ont tous moins de feu, de dureté, et devroient être d’un moindre prix que les blancs, dont l’eau est pure et vive.

1. La pesanteur spécifique du rubis d’Orient est de 42855; celle de la vermeille est de 42299; celle de la topaze d’Orient, de 40106; celle du saphir d’Orient bleu, de 59941; du saphir blanc, de 59911; et la pesanteur spécifique du diamant oriental n’est que de 35212.

2. Les diamants de couleur sont un peu moins durs que les blancs. (Note communiquée par M. Hoppé.)
une couleur décidée de rose, d’orange, de jaune, de vert et de bleu, réfléchissent ces couleurs avec plus de vivacité que n’en ont les rubis balais, vermeilles, topazes, et saphirs, et sont toujours dé un plus grand prix que ces pierres : mais ceux dont les couleurs sont brouillées, brunes ou noirâtres, n’ont que peu de valeur. Ces diamants de couleur obscure sont, sans comparaison, plus communs que les autres; il y en a même de noirs, et presque opaques, qui ressemblent, au premier coup d’œil, à la pyrite martiale.

1. Les diamants s’imprègnent de toutes les couleurs qui brillent dans les autres pierres précieuses (excepté la violette ou la pourpre): mais ces couleurs sont toujours très claires, c’est-à-dire qu’un diamant rouge est couleur de rose, etc.; il n’y a que le jaune dont les diamants se chargent assez fortement pour égaler quelquefois et même surpasser une topaze d’Orient.

C’est la couleur bleue dont le diamant se charge le plus après le jaune. En général, les diamants colorés purement sont extrêmement rares; la couleur qu’ils prennent le plus communément est un jaune sale, enfermé ou roussâtre, et alors ils diminuent beaucoup de leur valeur; mais lorsque les couleurs sont franches et nettes, leur prix augmente du double, du triple, et souvent même du quadruple.

Le bleu pur est la couleur la plus rare à rencontrer dans un diamant, car les diamants bleus ont presque toujours un ton d’acier: le roi en possède un de cette couleur d’un volume très considérable. Cette pierre est regardée par les amateurs comme une des productions les plus étonnantes et les plus parfaites de la nature.

Les diamants rouges, ou plutôt roses, sont rarement de la vivacité et du jeu; ils ont ordinairement un ton savonneux. Les verts sont les plus recherchés des diamants de couleur, parce qu’ils joignent à la rareté et au mérite de la couleur la vivacité et le jeu, que n’ont pas toujours les autres diamants colorés. Il y en a des diamants très blancs et très purs qui n’ont cependant pas plus de jou qu’un cristal de roche: ceux-là viennent ordinairement du Brésil. (Note communiquée par M. Hoppé.)

2. M. Dutens dit avoir vu un diamant noir dans la collection du prince de Lichtenstein, à Vienne.
Tous ces diamants n’ont de valeur que par la singu-
larité.

Des défauts encore très communs dans les diamants blancs et colorés sont les glaces et les points rougeâtres, bruns, et noirs : les glaces proviennent d’un manque de continuité et d’un vide entre les lames dont le diamant est composé ; et les points, de quel-
que couleur qu’ils soient, sont des particules de ma-
tière hétérogène qui sont mêlées dans sa substance. Il est difficile de juger des défauts et encore moins de la beauté des diamants bruts, même après les avoir décroûtés. Les Orientaux les examinent à la lumière d’une lampe, et prétendent qu’on en juge mieux qu’à celle du jour. La belle eau des diamants consiste dans la netteté de leur transparence, et dans la vivacité de la lumière blanche qu’ils renvoient à l’œil ; et dans les diamants bruts on ne peut connaître cette eau et ce reflet que sur ceux dont les faces extérieures ont été polies par la nature ; et comme ces diamants à faces polies sont fort rares, il faut en général avoir recours à l’art et les polir pour pouvoir en juger. Lorsque leur eau et leur reflet ne sont pas d’un blanc éclatant et pur, et qu’on y aperçoit une nuance de gris ou de bleuâtre, c’est une imperfection, qui seule diminue prodigieusement la valeur du diamant, quand même il n’aurait pas d’autres défauts. Les Orientaux prèten-
dent encore que ce n’est qu’à l’ombre d’un arbre touffu qu’on peut juger de l’eau des diamants. Enfin ce n’est pas toujours par le volume ou le poids qu’on doit esti-
mer les diamants : il est vrai que les gros sont, sans comparaison, plus rares et bien plus précieux que les petits; mais dans tous la proportion des dimensions
fait plus que le volume, et ils sont d'autant plus chers qu'ils ont plus de hauteur, de fond ou d'épaisseur, relativement à leurs autres dimensions.

Pline nous apprend que le diamant étoit si rare autrefois, que son prix excessif ne permettoit qu'aux rois les plus puissants d'en avoir : il dit que les anciens se persuadoient qu'il ne s'en trouvoit qu'en Éthiopie, mais que de son temps l'on en tiroit de l'Inde, de l'Arabie, de la Macédoine, et de l'île de Chypre ; néanmoins je dois observer que les habitants de l'île de Chypre, de la Macédoine, de l'Arabie, et même de l'Éthiopie, ne les trouvoient pas dans leur pays, et que ce rapport de Pline ne doit s'entendre que du commerce que ces peuples faisoient dans les Indes orientales, d'où ils tiroient les diamants que l'on portoit ensuite en Italie. On doit aussi modifier et même se refuser à croire ce que le naturaliste romain nous dit des vertus sympathiques et antipathiques des diamants, de leur dissolution dans le sang de bouc, et de la propriété qu'ils ont de détruire l'action de l'aimant sur le fer.

On employoit autrefois les diamants bruts et tels qu'ils sortoient de la terre : ce n'est que dans le quinzième siècle qu'on a trouvé en Europe l'art de les tailler ; et l'on ne connoissoit encore alors que ceux qui nous venoient des Indes orientales. « En 1678, dit un illustre voyageur, il y avoit dans le royaume de Golconde vingt mines de diamants ouvertes, et quinze dans celui de Visapour. Ils sont très abondants dans ces deux royaumes : mais les princes qui y règnent ne permettent d'ouvrir qu'un certain nombre de mines, et se réservent tous les diamants d'un certain poids ;
c'est pour cela qu'ils sont rares, et qu'on en voit très peu de gros. Il y a aussi des diamants dans beaucoup d'autres lieux de l'Inde, et particulièrement dans le royaume de Pégu; mais le roi se contente des autres pierres précieuses et de diverses productions utiles que fournit son pays, et ne souffre pas qu'on fasse aucune recherche pour y trouver de nouveaux trésors, dans la crainte d'exciter la cupidité de quelque puissance voisine. Dans les royaumes de Golconde et de Visapour, les diamants se trouvent ordinairement épars dans la terre, à une médiocre profondeur, au pied des hautes montagnes, formées en partie par différents lits de roc vif, blanc, et très dur; mais cependant, dans certaines mines qui dépendent de Golconde, on est obligé de creuser en quelques lieux à la profondeur de quarante ou cinquante brasses, au travers du rocher, et d'une sorte de pierre minérale assez semblable à certaines mines de fer, jusqu'à ce qu'on soit parvenu à une couche de terre dans laquelle se trouvent les diamants. Cette terre est rouge, comme celle de la plupart des autres mines de diamants; il y en a cependant quelques unes dont la terre est jaune ou orangée, et celle de la seule mine de Wor- thor est noire. » Ce sont là les principaux faits que l'on peut recueillir du Mémoire qui fut présenté, sur la fin du siècle dernier, à la Société royale de Londres, par le grand-maréchal d'Angleterre, touchant les mines de diamants de l'Inde, qu'il dit avoir vues et examinées.

De tous les autres voyageurs, Tavernier est presque le seul qui nous ait indiqué d'une manière un peu précise les différents lieux où se trouvent les diamants
dans l'ancien continent; il donne aussi le nom de _mines de diamants_ aux endroits dont on les tire; et tous ceux qui ont écrit après lui ont adopté cette expression, tandis que, par leurs propres descriptions, il est évident que non seulement les diamants ne se trouvent pas en mines comme les métaux, mais que même ils ne sont jamais attachés aux rochers comme le sont les cristaux. On en trouve, à la vérité, dans les fentes plus ou moins étroites de quelques rochers, et quelquefois à d'assez grandes profondeurs, lorsque ces fentes sont remplies de terre limoneuse, dans laquelle le diamant se trouve isolé, et n'a pas d'autre matrice que cette même terre. Ceux que l'on trouve à cinq journées de Golconde, et à huit ou neuf de Visapour, sont dans des veines de cette terre entre les rochers; et comme ces veines sont souvent obliques ou tortueuses, les ouvriers sont obligés de casser le rocher, afin de suivre la veine dont ils tirent la terre avec un instrument crochu, et c'est en délayant à l'eau cette terre qu'ils en séparent les diamants. On en trouve aussi dans la première couche de la terre de ces mêmes lieux, à très peu de profondeur, et c'est même dans cette couche de terre limoneuse qu'on rencontre les diamants les plus nets et les plus blancs; ceux que l'on tire des fentes des rochers ont souvent des glaces qui ne sont pas des défauts de nature, mais des fêlures qui proviennent des chocs que les ouvriers, avec leurs outils de fer, donnent aux diamants en les recherchant dans ces fentes de rocher.

Taverniercite quelques autres endroits où l'on trouve des diamants: « L'un est situé à sept journées de Golconde, en tirant droit au levant, dans une
plaine voisine des montagnes, et près d'un gros bourg, sur la rivière qui en découle. On rencontre d'autant plus de diamants qu'on approche de plus près de la montagne, et néanmoins on n'y en trouve plus aucun dès qu'on monte trop haut. Les diamants se trouvent en ce lieu presque à la surface de la terre. » Il dit aussi que le lieu où l'on a le plus anciennement trouvé des diamants est au royaume de Bengale, auprès du bourg de Soonelpour, situé sur la rivière de Gouil, et que c'est dans le limon et les sables de cette rivière que l'on recueille ces pierres précieuses; on ne fouille ce sable qu'à la profondeur de deux pieds; et néanmoins c'est de cette rivière que viennent les diamants de la plus belle eau: ils sont assez petits, et il est rare qu'on y en trouve d'un grand volume. Il a observé qu'en général les diamants colorés tirent leur teinture du sol qui les produit.

Dans un autre lieu du royaume de Golconde on a trouvé des diamants en grande quantité; mais comme ils étoient tous roux, bruns, ou noirs, la recherche en a été négligée et même défendue. On trouve encore de beaux diamants dans le limon d'une rivière de l'île de Bornéo; ils ont le même éclat que ceux de la rivière de Gouil, ou des autres qu'on tire de la terre au Bengale et à Golconde.

On comptoit en 1678 vingt-trois mines, c'est-à-dire vingt-trois lieux différents, d'où l'on tire des diamants au seul royaume de Golconde; et, dans tous, la terre où ils se trouvent est jaunâtre ou rougeâtre comme notre terre limoneuse; les diamants y sont isolés, et très rarement groupés deux ou trois ensemble; ils n'ont point de gangue ou matrice particulière, et sont
seulement environnés de cette terre. Il en est de même dans tous les autres lieux où l'on tire des diamants, au Malabar, à Visapour, au Bengale, etc. : c'est toujours dans les sables des rivières ou dans la première couche du terrain, ainsi que dans les fentes des rochers remplies de terre limoneuse, que gisent les diamants, tous isolés, et jamais attachés, comme les cristaux, à la surface du rocher; quelquefois ces veines de terre limoneuse qui remplissent les fentes des rochers descendent à une profondeur de plusieurs toises, comme nous le voyons dans nos rochers calcaires ou même dans ceux de grès, et dans les glaises dont la surface extérieure est couverte de terre végétale. On suit donc ces veines perpendiculaires de terre limoneuse qui produisent des diamants jusqu'à cette profondeur; et l'on a observé que dès qu'on trouve l'eau, il n'y a plus de diamants, parce que la veine de terre limoneuse se termine à cette profondeur.

On ne connoissoit, jusqu'au commencement de ce siècle, que les diamants qui nous venoient des presqu'îles ou des îles de l'Inde orientale; Golconde, Visapour, Bengale, Pégu, Siam, Malabar, Ceylan, et Bornéo, étoient les seules contrées qui les fournissaient : mais, en 1728, on en a trouvé dans le sable de deux rivières au Brésil ; ils y sont en si grande quantité, que le gouvernement de Portugal fait garder soigneusement les avenues de ces lieux, pour qu'on ne puisse y recueillir des diamants qu'autant que le commerce peut en faire débiter sans diminution de prix.

Il est plus que probable que si l'on faisoit des recherches dans les climats les plus chauds de l'Afrique,
on y trouveroit des diamants comme il s'en trouve dans les climats les plus chauds de l'Asie et de l'Amérique : quelques relateurs assurent qu'il s'en trouve en Arabie, et même à la Chine ; mais ces faits me semblent très douteux, et n'ont été confirmés par aucun de nos voyageurs récents.

Les diamants bruts, quoique bien lavés, n'ont que très peu d'éclat, et ils n'en prennent que par le poli, qu'on ne peut leur donner qu'en employant une matière aussi dure, c'est-à-dire de la poudre de diamant ; toute autre substance ne fait sur ces pierres aucune impression sensible, et l'art de les tailler est aussi moderne qu'il étoit difficile : il y a même des diamants qui, quoique de la même essence que les autres, ne peuvent être polis et taillés que très difficilement ; on leur donne le nom de diamants de nature ; leur texture par lames courbes faits qu'ils ne présentent aucun sens dans lequel on puisse les entamer régulièrement.

RUBIS ET VERMEILLE.

Quoique la densité du rubis soit de près d'un sixième plus grande que celle du diamant, et qu'il résiste plus fortement et plus long-temps à l'action du feu, sa dureté et son homogénéité ne sont pas, à beaucoup près, égales à celles de cette pierre unique en son genre et la plus parfaite de toutes. Le rubis contient moins de feu fixe que le diamant ; il est moins com-
bustible; et sa substance, quoique simple, puisqu’il ne donne qu’une seule réfraction, est néanmoins tissu de parties plus terreuses et moins ignées que celles du diamant. Nous avons dit que les couleurs étoient une sorte d’imperfection dans l’essence des pierres transparentes, et même dans celle des diamants: le rubis, dont le rouge est très intense, a donc cette imperfection au plus haut degré; et l’on pourrait croire que les parties métalliques qui se sont uniformément distribuées dans sa substance lui ont donné non seulement cette forte couleur, mais encore ce grand excès de densité sur celle du diamant, et que ces parties métalliques n’étant point inflammables ni parfaitement homogènes avec la matière transparente qui fait le fonds de la substance du rubis, elles l’ont rendu plus pesant, et en même temps moins combustible et moins dur que le diamant. Mais l’analyse chimique a démontré que le rubis ne contient point de parties métalliques fixes en quantité sensible; elles ne pourroient en effet manquer de se présenter en particules massives si elles produisissent cet excès de densité: il me semble donc que ce n’est point au mélange des parties métalliques qu’on doit attribuer cette forte densité du rubis, et qu’elle peut provenir, comme celle des spaths pesants, de la seule réunion plus intime des molécules de la terre bolaire ou limoneuse.

L’ordre de dureté, dans les pierres précieuses, ne suit pas celui de densité; le diamant, quoique moins dense, est beaucoup plus dur que le rubis, la topaze, et le saphir, dont la dureté paraît être à très peu près la même. La forme de cristallisation de ces trois pier-
res est aussi la même; mais la densité du rubis surpassé encore celle de la topaze et du saphir 4.

Je ne parle ici que du vrai rubis; car il y a deux autres pierres transparentes, l'une d'un rouge foncé, et l'autre d'un rouge clair, auxquelles on a donné les noms de rubis spinelle et de rubis balais, mais dont la densité, la dureté, et la forme de cristallisation, sont différentes de celles du vrai rubis. Voici ce que m'écrit à ce sujet M. Brisson, de l'Académie des Sciences, auquel nous sommes redevables de la connaissance des pesanteurs spécifiques de tous les minéraux:

«Le rubis balais paroit n'être autre chose qu'une variété du rubis spinelle. Les pesanteurs de ces deux pierres sont à peu près semblables; celle du rubis balais est un peu moindre que celle du spinelle, sans doute parce que sa couleur est moins foncée: de plus, ces deux pierres cristallisent précisément de la même manière; leurs cristaux sont des octaèdres réguliers, composés de deux pyramides à quatre faces triangulaires équilatérales, opposées l'une à l'autre par leur base. Le rubis d'Orient diffère beaucoup de ces pierres, non seulement par sa pesanteur, mais encore par sa forme; ses cristaux sont formés de deux pyramides hexaèdres fort allongées, opposées l'une à l'autre par leur base, et dont les six faces de chacune sont des triangles isocèles. Voici les pesanteurs spécifiques de ces trois pierres: rubis d'Orient, 42855; rubis spinelle, 37600; rubis balais, 36458. » C'est aussi le sentiment d'un de nos plus grands connois-

1. La pesanteur spécifique du rubis d'Orient est de 42855; celle de la topaze d'Orient, de 40106; celle du saphir d'Orient, de 39941. (Tables de M. Brisson.)
seurs en pierres précieuses. L'essence du rubis spinelle et du rubis balais paraît donc être la même, à la couleur près; leur texture est semblable; et quoique je les aie compris dans ma table méthodique comme des variétés du rubis d'Orient, on doit les regarder comme des pierres dont la texture est différente.

Le rouge du rubis d'Orient est très intense et d'un feu très vif; l'incarnat, le ponceau, et le pourpre, y sont souvent mêlés, et le rouge foncé s'y trouve quelquefois teint par nuances de ces deux ou trois couleurs; et lorsque le rouge est mêlé d'orangé, on lui donne le nom de vermeille. Dans les observations que M. Hoppé a eu la bonté de me communiquer, il regarde la vermeille et le rubis balais comme des variétés du rubis spinelle. Cependant la vermeille dont je parle étant à très peu près de la même pesanteur spécifique que le rubis d'Orient, on ne peut guère douter qu'elle ne soit de la même essence.

Le diamant, le rubis, la vermeille, la topaze, le

1. Voici ce que M. Hoppé m'a fait l'honneur de m'écrire à ce sujet. «Je prendrai, monsieur le comte, la liberté de vous observer que le rubis spinelle est d'une nature entièrement différente du rubis d'Orient; ils sont, comme vous le savez, cristallisés différemment, et le premier est infiniment moins dur que le second. Dans le rubis d'Orient, comme dans le saphir et la topaze de la même contrée, la couleur est étrangère et infiltrée, au lieu qu'elle est partie constitutive de la matière dans le rubis spinelle. Le rubis spinelle, loin d'être d'un rouge pourpre, c'est-à-dire mêlé de bleu, est au contraire d'un rouge très chargé de jaune ou écarlate, couleur que n'a jamais le rubis d'Orient, dont le rouge n'approche que très rarement du ponceau, mais qui, d'un autre côté, prend assez fortement le bleu pour devenir entièrement violet, ce qui forme alors l'améthyste d'Orient.»

2. Ayant communiqué cette réflexion à M. Hoppé, voici ce qu'il a
saphir, et le girasol, sont les seules pierres précieuses du premier rang; on peut y ajouter les rubis spinelle et balais, qui en diffèrent par la texture et par la densité. Toutes ces pierres, et ces pierres seules avec les spaths pesants, n'ont qu'une seule réfraction; toutes les autres substances transparentes, de quelque nature qu'elles soient, sont certainement moins homogènes, puisque toutes donnent de doubles réfractions.

Mais on pourrait réduire dans le réel ces huit espèces nominales à trois, savoir : le diamant, la pierre d'Orient, et le rubis spinelle; car nous verrons que l'es-

en la bonté de me répondre à ce sujet par sa lettre du 6 décembre de cette année 1785.

« Je suis enchanté de voir que mes sentiments sur la nature de la pierre d'Orient et du rubis spinelle aient obtenu votre approbation; et si votre avis diffère du mien au sujet de la vermeille, c'est faute de m'être expliqué assez exactement dans ma lettre du 2 mai 1785, et d'avoir su que c'est au rubis d'Orient ponceau que vous donnez le nom de vermeille. Je n'entends sous cette dénomination que le grenat ponceau de Bohème (qui est, selon les amateurs, la vermeille par excellence), et le rubis spinelle écarlate taillé en cabochon, que l'on qualifie alors, faussement à la vérité, de vermeille d'Orient. De cette manière, monsieur le comte, j'ai la satisfaction de vous trouver pour le fond entièrement d'accord avec moi, et cela doit nécessairement flatter mon amour-propre.

» J'aurai l'honneur de vous observer encore que la plupart des joailliers s'obstinent aussi à appeler vermeille le grenat rouge jaune de Ceylan, et le hiacinto-guarancino des Italiens, lorsqu'ils sont pareillement taillés en cabochon, mais ces deux pierres ne peuvent point entrer en comparaison pour la beauté avec la vermeille d'Orient. »

Je n'ajouterai qu'un mot à cette note instructive de M. Hoppé; c'est qu'il sera toujours aisé de distinguer la véritable vermeille d'Orient de toutes ces autres pierres auxquelles on donne son nom, par sa plus grande pesanteur spécifique, qui est presque égale à celle du rubis d'Orient.
sence du rubis d’Orient, de la vermeille, de la topaze, du saphir, et du girasol, est la même, et que ces pierres ne diffèrent que par des qualités extérieures.

Ces pierres précieuses ne se trouvent que dans les régions les plus chaudes des deux continents; en Asie, dans les îles et presqu’îles des Indes orientales; en Afrique, à Madagascar; et en Amérique, dans les terres du Brésil.

Les voyageurs conviennent unanimement que les rubis d’un volume considérable, et particulièrement les rubis bâlais, se trouvent dans les terres et les rivieres du royaume de Pégu, de Camboye, de Visapour, de Golconde, de Siam, de Laos, ainsi que dans quelques autres contrées des Indes méridionales; et quoiqu’ils ne citent en Afrique que les pierres précieuses de Madagascar, il est plus que probable qu’il en existe, ainsi que des diamants, dans le continent de cette partie du monde, puisqu’on a trouvé des diamants en Amérique, au Brésil, où la terre est moins chaude que dans les parties équatoriales de l’Afrique.

Au reste, les pierres connues sous le nom de rubis au Brésil ne sont, comme nous l’avons dit, que des cristaux vitreux produits par le schorl; il en est de même des topazes, émeraudes, et saphirs de cette contrée: nous devons encore observer que les Asiatiques donnent le même nom aux rubis, aux topazes, et aux saphirs d’Orient, qu’ils appellent rubis rouges, rubis jaunes, et rubis bleus, sans les distinguer par aucune autre dénomination particulière; ce qui vient à l’appui de ce que nous avons dit au sujet de l’essence de ces trois pierres, qui est en effet la même.

Ces pierres, ainsi que les diamants, sont produites
par la terre limoneuse dans les seuls climats chauds, et je regarde comme plus que suspect le fait rapporté par Tavernier, sur des rubis trouvés en Bohême dans l’intérieur des cailloux creux : ces rubis n’étoient sans doute que des grenats ou des cristaux de schorl, teints d’un rouge assez vif pour ressembler par leur couleur aux rubis ; il en est probablement de ces prétendus rubis trouvés en Bohême comme de ceux de Perse, qui ne sont aussi que des cristaux tendres et très différents des vrais rubis.

Au reste, ce n’est pas sans raisons suffisantes que nous avons mis la vermeille au nombre des vrais rubis, puisqu’elle n’en diffère que par la teinte orangée de son rouge, que sa dureté et sa densité sont les mêmes que celles du rubis d’Orient¹, et qu’elle n’a aussi qu’une seule réfraction : cependant plusieurs naturalistes ont mis ensemble la vermeille avec l’hyacinthe et le grenat ; mais nous croyons être fondés à la séparer de ces deux pierres vitreuses, non seulement par sa densité et par sa dureté plus grandes, mais encore parce qu’elle résiste au feu comme le rubis, au lieu que l’hyacinthe et le grenat s’y fondent.

Le rubis spinelle et le rubis balais doivent aussi être mis au nombre des pierres précieuses, quoique leur densité soit moindre que celle du vrai rubis ; on les trouve les uns et les autres dans les mêmes lieux, toujours isolés, et jamais attachés aux rochers : ainsi l’on ne peut regarder ces pierres comme des cristaux vitreux, d’autant qu’elles n’ont, comme le diamant et le vrai rubis, qu’une simple réfraction ; elles ont

¹. La pesanteur spécifique de la vermeille est de 4299 ; celle du rubis d’Orient, de 42858. (Tablez de M. Brisson)
seulement moins de densité et ressemblent à cet égard au diamant, dont la pesanteur spécifique est moindre que celle de ces cinq pierres précieuses du premier rang, et même au dessous de celle du rubis spinelle et du rubis balais. Le diamant et les pierres précieuses que nous venons d'indiquer sont composés de lames très minces, appliquées les unes sur les autres plus ou moins régulièrement, et c'est encore un caractère qui distingue ces pierres des cristaux, dont la texture n'est jamais lamelleuse.

Nous avons déjà observé que des trois couleurs rouge, jaune, et bleue, dont sont teintes les pierres précieuses, le rouge est la plus fixe : aussi le rubis spinelle, qui est d'un rouge profond, ne perd pas plus sa couleur au feu que le vrai rubis, tandis qu'un moindre degré de chaleur fait disparaître le jaune des topazes, et surtout le bleu des saphirs.

Les rubis balais se trouvent quelquefois en assez gros volume; j'en ai vu trois en 1742 dans le garde-meuble du roi, qui étoient d'une forme quadrangulaire, et qui avoient près d'un pouce en carré sur sept à huit lignes d'épaisseur. Robert de Berquen en cite un qui étoit encore plus gros. Ces rubis, quoique très transparents, n'ont point de figure déterminée : cependant leur cristallisation est assez régulière ; ils sont, comme le diamant, cristallisés en octaèdre : mais, soit qu'ils se présentent en gros ou en petit volume, il est aisé de reconnoître qu'ils ont été frottés fortement et long-temps dans les sables des torrents et des rivières où on les trouve, car ils sont presque toujours en masses assez irrégulières, avec les angles émoussés et les arêtes arrondies.
TOPAZE, SAPHIR, ET GIRASOL.

Je mets ensemble ces trois pierres, que j'aurois même pu réunir au rubis et à la vermeille; leur essence, comme je l'ai dit, étant la même, et parce qu'elles ne diffèrent entre elles que par les couleurs : celles-ci, comme le diamant, le rubis, et la vermeille, n'offrent qu'une simple réfraction ; leur substance est donc également homogène, leur dureté et leur densité sont presque égales ; d'ailleurs il s'en trouve qui sont moitié topaze et moitié saphir, et d'autres qui sont tout-à-fait blanches, en sorte que la couleur jaune ou bleue n'est qu'une teinture accidentelle qui ne produit aucun changement dans leur essence. Ces parties colorantes, jaunes et bleues, sont si ténues, si volatiles, qu'on peut les faire disparaître en chauffant les topazes et les saphirs, dont ces couleurs n'augmentent pas sensiblement la densité : car le saphir blanc pèse spécifiquement à très peu près autant

1. La pesanteur spécifique de la topaze orientale est de 40106 ; celle du saphir oriental, de 59941 ; et celle du girasol, de 40000. (Tables de M. Brisson.)

2. On prétend même qu'en choisissant dans les saphirs ceux qui n'ont qu'une teinte assez légère de bleu, et en les faisant chauffer assez pour faire évanouir cette couleur, ils prennent un éclat plus vif en devenant parfaitement blancs, et que dans cet état ce sont les pierres qui approchent le plus du diamant : cependant il est toujours aisé de les distinguer par leur force de réfraction, qui n'approche pas de celle du diamant.
que le saphir bleu; le rubis est, à la vérité, d'environ un vingtième plus dense que la topaze, le saphir, et le girasol. La force de réfraction du rubis est aussi un peu plus grande que celle de ces trois pierres, et l'on croit assez généralement qu'il est aussi plus dur ; cependant un amateur très attentif et très instruit, que nous avons déjà eu occasion de citer, et qui a bien voulu me communiquer ses observations, croit être fondé à penser que, dans ces pierres, la différence de dureté ne vient que de l'intensité plus ou moins grande de leur couleur ; moins elles sont

1. La pesanteur spécifique du saphir bleu oriental est de 59911 ; celle du rubis, de 42285. (Tables de M. Brisson.)
2. M. l'abbé Rochon a reconnu que la réfraction du rubis d'Orient est 208 ; celle de la topaze d'Orient, 199 ; celle du saphir, 198 ; et celle du girasol, 197.
3. Les rubis, le saphir, la topaze, etc., ne sont que la même matière différemment colorée. L'on croit assez généralement que le rubis est plus dur que le saphir, et que ce dernier l'est plus que la topaze ; mais c'est une erreur : ces trois pierres ont à peu près la même dureté, qui n'est modifiée que par le plus ou moins d'intensité de la couleur, et ce sont toujours les pierres les moins imprégnées de matière colorante qui sont les plus dures, de manière qu'une topaze claire a plus de dureté qu'un rubis foncé ; cela a été constamment observé par les bons lapidaires, et ils ont trouvé très rarement des exceptions à cette règle.

Il arrive quelquefois que la pierre est absolument privée de couleur, étant entièrement blanche, et c'est alors qu'elle a le plus grand degré de dureté ; ce qui s'accorde parfaitement avec ce que je viens de dire. Cette pierre incoloree s'appelle saphir blanc ; mais cette dénomination n'est pas exacte ; car elle n'est pas plus saphir blanc que rubis blanc ou topaze blanche. Je crois que cette fausse dénomination ne vient que de la propriété qu'a le saphir légèrement teint de perdre entièrement sa couleur au feu, et que l'on confond les pierres naturellement blanches avec celles qui ne le deviennent qu'artificiellement.

C'est de la couleur bleue que la matière de ces pierres se charge le
colorées, plus elles sont dures, en sorte que celles qui sont tout-à-fait blanches sont les plus dures de toutes : je dis tout-à-fait blanches ; car indépendamment du diamant, dont il n’est point ici question, il se trouve en effet des rubis, topazes, et saphirs, entièrement blancs, et d’autres en partie blancs, tandis que le reste est coloré de rouge, de jaune ou de bleu.

Comme ces pierres, ainsi que le diamant, ne sont formées que des parties les plus pures et les plus fines de la terre limoneuse, il est à présumer que leurs couleurs ne proviennent que du fer que cette terre contient en dissolution, et sous autant de formes qu’elles offrent de couleurs différentes, dont la rouge est la plus fixe au feu ; car la topaze et le saphir s’y décolorent, tandis que le rubis conserve sa couleur rouge, ou ne la perd qu’à un feu assez violent pour le brûler.

Ces pierres précieuses rouges, jaunes, bleues, et même blanches, ou mêlées de ces couleurs, sont donc de la même essence, et ne diffèrent que par cette apparence extérieure : on en a vu qui, dans un assez petit morceau, présentaient distinctement le rouge du rubis, le jaune de la topaze, et le bleu du saphir. Mais au reste ces pierres n’offrent leur couleur dans toute sa beauté que par petits espaces ou dans une partie de leur étendue, et cette couleur est souvent très inégale ou brouillée dans le reste de leur masse : c’est ce qui fait la rareté et le très haut prix des rubis, topazes, et saphirs, d’une certaine gros-
Topaze, Saphir, et Gélasol.

Seur lorsqu'ils sont parfaits, c'est-à-dire d'une belle couleur veloutée, uniforme, d'une transparence nette, d'un éclat également vif partout, et sans aucun défaut, aucune imperfection dans leur texture ; car ces pierres, ainsi que toutes les autres substances transparentes et cristallisées, sont sujettes aux glaces, aux points, aux vergettes ou filets, et à tous les défauts qui peuvent résulter du manque d'uniformité dans leur structure, et de la dissolution imparfaite ou du mélange mal assorti des parties métalliques qui les colorent.

La topaze d'Orient est d'un jaune vif couleur d'or, ou d'un jaune plus pâle et citrin : dans quelques unes, et ce sont les plus belles, cette couleur vive et nette est en même temps moelleuse et comme satinée, ce qui donne encore plus de lustre à la pierre. Celles qui manquent de couleur et qui sont entièrement blanches ne laissent pas de briller d'un éclat assez vif : cependant on ne peut guère les confondre avec les diamants, car elles n'en ont ni la dureté, ni la force de réfraction, ni le beau feu. Il en est de même des 1. Les pierres d'Orient sont singulièrement sujettes à être calcédoineuses, glaceuses, et inégales de couleur. Ce sont particulièrement ces trois grands défauts qui rendent les pierres orientales d'une rareté si désespérante pour les amateurs.

Le rouge, le bleu, et le jaune, sont les trois couleurs les plus dominantes et les plus universellement connues dans ces pierres ; ce sont justement les trois couleurs mères, c'est-à-dire celles dont les différentes combinaisons entre elles produisent toutes les autres. Excepté le bleu et le jaune, toutes les autres couleurs et nuances n'offrent la pierre d'Orient que sous un très petit volume. En général, toute pierre d'Orient quelconque, rigoureusement parfaite, du poids de 56 à 40 grains, est une chose très extraordinaire. (Note communiquée par M. Hoppé.)
saphirs blancs; et lorsqu'à cet égard on veut imiter la nature, on fait aisément, au moyen du feu, évap-nourir le jaune des topazes, et encore plus aisément le bleu des saphirs, parce que des trois couleurs rouge, jaune, et bleue, cette dernière est la plus volatile : aussi la plupart des saphirs blancs répandus dans le commerce ne sont originairement que des saphirs d'un bleu très pâle, que l'on a fait chauffer pour leur enlever cette faible couleur.

Les contrées de l'Inde où les topazes et les saphirs se trouvent en plus grande quantité sont l'île de Cey-lan et les royaumes de Pégu, de Siam, et de Gol-conde; les voyageurs en ont aussi rencontré à Madagas- car; et je ne doute pas, comme je l'ai dit, qu'on n'en trouvât de même dans les terres du continent de l'Afrique, qui sont celles de l'univers où la chaleur est la plus grande et la plus constante. On en a aussi rencontré dans les sables de quelques rivières de l'A- mérique méridionale.

Les topazes d'Orient ne sont jamais d'un jaune foncé; mais il y a des saphirs de toutes les teintes de bleu, depuis l'indigo jusqu'au bleu pâle : les saphirs d'un bleu céleste sont plus estimés que ceux dont le bleu est plus foncé ou plus clair; et lorsque ce bleu se trouve mêlé de violet ou de pourpre, ce qui est assez rare, les lapidaires donnent à ce saphir le nom d'améthyste orientale. Toutes ces pierres bleues ont une couleur suave, et sont plus ou moins resplendissantes au grand jour; mais elles perdent cette splendeur et paraissent assez obscures aux lumières.

J'ai déjà dit et je crois devoir répéter que les rubis, topazes, et saphirs, ne sont pas, comme les cristaux,
attachés aux parois des fentes des rochers vitreux : c'est dans les sables des rivières et dans les terrains adjacents qu'on les rencontre sous la forme de petits cailloux ; et ce n'est que dans les régions les plus chaudes de l'Asie, de l'Afrique, et de l'Amérique, qu'ils peuvent se former et se forment en effet. Il n'y a que les saphirs trouvés dans le Vélay qui fassent exception à ce fait général, en supposant qu'ils n'aient, comme les vrais saphirs, qu'une simple réfraction : ce qu'il faudroit vérifier ; car du reste il paraît, par leur densité et leur dureté, qu'ils sont de la même nature que le saphir d'Orient.

Un défaut très commun dans les saphirs est le nuage ou l'apparence laiteuse qui ternit leur couleur et diminue leur transparence ; ce sont ces saphirs laiteux auxquels on a donné le nom de girasols, lorsque le bleu est teint d'un peu de rouge : mais quoique les couleurs ne soient pas franches dans le girasol, et que sa transparence ne soit pas nette, il n'a néanmoins de très beaux reflets, surtout à la lumière du soleil, et il n'a, comme le saphir, qu'une simple réfraction. Le girasol n'est pas une pierre vitreuse, mais une pierre supérieure à tous les extraits du quartz et du schorl : il est en effet spécifiquement aussi pesant que le saphir et la topaze. Ainsi l'on se tromperoit si l'on prenoit le girasol pour une sorte de calcédoine, à cause de la ressemblance de ces deux pierres par leur transparence laiteuse et leur couleur bleuâtre ; ce sont certainement deux substances très différentes : la calcédoine n'est qu'une sorte d'agate, et le girasol est un saphir, ou plutôt une pierre qui fait la nuance entre le saphir et le rubis ; son origine et son essence
sont absolument différentes de celles de la calcédoine. Je crois devoir insister sur ce point, parce que la plupart des naturalistes ont réuni le girasol et la calcédoine sur la seule ressemblance de leur couleur bleuâtre et de leur transparence nuageuse. Au reste, les Italiens ont donné à cette pierre le nom de girasol, parce qu’à mesure qu’on la tourne, surtout à l’aspect du soleil, elle en réfléchit fortement la lumière; et comme elle présente à l’œil des reflets rougeâtres et bleus, nous sommes fondés à croire que sa substance participe de celle du saphir et du rubis, d’autant qu’elle est de la même dureté et à peu près de la même densité que ces deux pierres précieuses.

Si le bleu qui colore le saphir se trouvait mêlé en juste proportion avec le jaune de la topaze, il pourrait en resulter un vert d’émeraude: mais il faut que cette combinaison soit très rare dans la nature, car on ne connaît point d’émeraudes qui soient de la même dureté et de la même essence que les rubis, topazes, saphirs, et girasols d’Orient; et, s’il en existe, on ne peut pas les confondre avec aucune des émeraudes dont nous avons parlé, qui toutes sont beaucoup moins denses et moins dures que ces pierres d’Orient, et qui de plus donnent toutes une double réfraction.

On n’avait jusqu’ici regardé les diamants, rubis, topazes, et saphirs, que comme des cristaux plus parfaits que le cristal de roche; on leur donnait la même origine: mais leur combustibilité, leur grande dureté, leur forte densité, et leur réfraction simple,
démontrent que leur essence est absolument différente de celle de tous les cristaux vitreux ou calcaires ; et toutes les analogies nous indiquent que ces pierres précieuses, ainsi que les pyrites et les spaths pesants, ont été produites par la terre limonense : c'est par la grande quantité du feu contenu dans les détriments des corps organisés dont cette terre est composée que se forment toutes ces pierres, qu'on doit regarder comme des corps ignés qui n'ont pu tirer leur feu ou les principes de leur combustibilité que du magasin général des substances combustibles, c'est-à-dire de la terre produite par les détriments de tous les animaux et de tous les végétaux, dont le feu qui les animoit réside encore en partie dans leurs débris.

CONCRÉTIONS MÉTALLIQUES.

Les métaux, tels que nous les connaissons et que nous en usons, sont autant l'ouvrage de notre art que le produit de la nature ; tout ce que nous voyons sous la forme de plomb, d'étain, de fer, et même de cuivre, ne ressemble point du tout aux mines dont nous avons tiré ces métaux : leurs minerais sont des espèces de pyrites ; ils sont tous composés de parties métalliques minéralisées, c'est-à-dire altérées par le mélange intime de la substance du feu fixée par les acides.
La pyrite jaune n'est qu'un minerai de cuivre; la pyrite martiale, un minerai de fer; la galène du plomb et les cristaux de l'étain ne sont aussi que des minerais pyriteux. Si l'on recherche quelles peuvent être les puissances actives capables d'altérer la substance des métaux et de changer leur forme au point de les rendre méconnoissables en les minéralisant, on se persuadera qu'il n'y a que des sels qui puissent opérer cet effet, parce qu'il n'y a que les sels qui soient solubles dans l'eau, et qui puissent pénétrer avec elle les substances métalliques; car on ne doit pas confondre ici le métal calciné par le feu avec le métal minéralisé, c'est-à-dire la chaux des métaux produite par le feu primitif avec le minerai formé postérieurement par l'intermède de l'eau: mais, à l'exception de ces chaux métalliques produites par le feu primitif, toutes les autres formes sous lesquelles se présentent les métaux minéralisés proviennent de l'action des sels et du concours des éléments humides. Or nous avons vu qu'il n'y a que trois sels simples dans la nature, le premier formé par l'acide, le second par l'alcali, et le troisième par l'arsenic: toutes les autres substances salines sont plus ou moins imprégnées ou mêlées de ces trois sels simples; nous pouvons donc, sans craindre de nous tromper, rapporter à ces trois sels, ou à leurs combinaisons, toutes les différentes minéralisations des matières métalliques. L'arsenic est autant un sel qu'un métal; le soufre n'est que la substance du feu saisie par l'acide vitriolique: ainsi quand nous disons qu'une matière métallique est minéralisée par le soufre ou par l'arsenic, cela signifie seulement qu'elle a été altérée par l'un ou l'autre de ces sels simples; et
CONCRÉTIONS MÉTALLIQUES.

si l'on dit qu'elle a été minéralisée par tous deux, c'est parce que l'arsenic et le soufre ont tous deux agi sur le métal. Un seul des deux suffit souvent pour la minéralisation des métaux imparfaits, et même pour celle de l'argent : il n'y a que l'or qui exige la réunion de l'alcali et du soufre, ou de l'acide nitreux et de l'acide marin, pour se dissoudre ; et cette dissolution de l'or n'est pas encore une minéralisation, mais une simple division de ses parties en atomes si petits, qu'ils se tiennent suspendus dans ces dissolvants, et sans que leur essence en soit altérée, puisque l'or reparoit sous sa forme de métal pur, dès qu'on le fait précipiter.

Il me paraît donc que toutes les matières métalliques qui se présentent sous une forme minéralisée sont de seconde formation, puisqu'elles ont été altérées par l'action des sels et des éléments humides ; le feu, qui a le premier agi sur leur substance, n'a pu que les sublimer, les fondre, ou les calciner ; et même il faut, pour leur calcination ou réduction en chaux, le concours de l'air : l'or, qu'aucun sel ne peut minéraliser, et que le feu ne peut calciner, se présente toujours dans son état métallique, parce que ne pouvant être réduit en chaux, ni la fusion ni la sublimation n'altèrent sa substance ; elle demeure pure, ou simplement alliée des substances métalliques qui se sont fondues ou sublimées avec ce métal : or des six métaux il y en a trois, l'or, l'argent, et le cuivre, qui se présentent assez souvent dans leur état métallique ; et les trois autres, le plomb, l'étain, et le fer, ne se trouvent nulle part dans cet état ; ils sont toujours calcinés ou minéralisés.

BUFFON. IX.
On doit soigneusement distinguer la minéralisation du mélange simple : le mélange n’est qu’une interposition des parties hétérogènes et passives, et dont le seul effet est d’augmenter le volume ou la masse, au lieu que la minéralisation est non seulement une interposition de parties hétérogènes, mais de substances actives capables d’opérer une altération de la matière métallique. Par exemple, l’or se trouve mêlé avec tous les autres métaux sans être minéralisé, et les métaux en général peuvent se trouver mêlés avec des matières vitreuses ou calcaires sans être altérés. Le mélange n’est qu’une mélange, au lieu que la minéralisation est une altération, une décomposition, en un mot, un changement de forme dans la substance même du métal; et ce changement ne peut s’opérer que par des substances actives; c’est-à-dire par les sels et le soufre, qu’on ne doit pas séparer des sels, puisque l’acide vitriolique fait le fonds de sa substance.

Comme nous nous sommes suffisamment expliqué, dans les articles où il est question des métaux, sur l’origine et la formation des pyrites et des minerais métalliques, il ne nous reste à examiner que les concrétions qui proviennent du mélange ou de la décomposition de ces minerais : les unes de ces concrétions, et c’est le plus grand nombre, sont produites par l’intermède de l’eau, et quelques autres par l’action du feu des volcans. Nous les présenterons successivement, en commençant par les concrétions ferrugineuses, afin de suivre l’ordre dans lequel nous avons présenté les métaux.
CONCRÉTIONS DU FER.

ROUILLE DE FER ET OCRE.

La rouille de fer et l'ocre sont les plus simples et les premières décompositions du fer par l'impression des éléments humides; les eaux, chargées de parties ferrugineuses réduites en rouille, laissent déposer cette matière en sédiment dans les cavités de la terre, où elle prend plus ou moins de consistance, sans jamais acquérir un grand degré de dureté: elle y conserve aussi sa couleur plus ou moins jaune, qui ne s'altère ni ne change que par une seconde décomposition, soit par l'impression des éléments humides ou par celle du feu. Les ocres brunes auxquelles on donne le nom de terre d'ombre, et l'ocre légère et noire dont on se sert à la Chine pour écrire et dessiner, sont des décompositions ultérieures de la rouille du fer très atténuées, et dénuees de presque toutes ses qualités métalliques. On peut néanmoins leur rendre la vertu magnétique en leur faisant subir l'action du feu.

Toutes les ocres brunes, noires, jaunes ou rouges, fines ou grossières, légères ou pesantes, et plus ou moins concrètes, sont aisées à diviser et à réduire en poudre. On en connoit plusieurs espèces, tant pour
la couleur que pour la consistance ; M. Romé de l'Isle les a toutes observées et très bien indiquées. Au reste, nous ne séparons pas des ocres les mines de fer limoneuses ou terreuses qui ne sont pas en grains ; car ces mines ne sont en effet que des ocres ou rouilles de fer plus ou moins mêlées de terre limoneuse, et je dois me dispenser de parler ici des mines de fer en grains, dont j'ai expliqué la formation à l'article de la terre végétale et du fer.

TERRE D'OMBRE.

On peut regarder la terre d'ombre comme une terre bitumineuse à laquelle le fer a donné une forte teinture de brun : elle est plus légère que l'ocre, et devient blanche au feu, au lieu que l'ocre y prend ordinairement une couleur rougeâtre ; et c'est probablement parce que cette terre d'ombre ne contient pas, à beaucoup près, une aussi grande quantité de fer : il paraît même que ce métal ne lui a donné que la couleur, qui quelquefois est d'un brun clair, et d'autres fois d'un brun presque noir. Cette dernière porte dans le commerce le nom de terre de Cologne, parce qu'elle se trouve en assez grande quantité aux environs de cette ville ; mais il y en a aussi dans d'autres provinces de l'Allemagne, et M. Monnet 1 en a découvert en France qui paraît être de la même nature, et pour-

roît servir aux peintres comme la terre de Cologne, dont ils font grand usage.

ÉMERIL.

Il y a deux sortes d'émerils, l'un attirable et l'autre insensible à l'aimant. Le premier est un quartz ou un jaspe mêlé de particules ferrugineuses et magnétiques : l'émeril rouge de Corse et l'émeril gris, qui sont attirables à l'aimant, peuvent être mis au nombre des mines primordiales formées par le feu primitif. La seconde sorte d'émeril, et c'est la plus commune, n'est point attirable à l'aimant, quoiqu'elle contienne peut-être plus de fer que la première : le fonds de sa substance est une matière quartzeuse de seconde formation ; il a tous les caractères d'un grès dur, mêlé d'une quantité de fer qui en augmente encore la dureté : mais ce métal étoit en dissolution et avait perdu de sa vertu magnétique lorsqu'il s'est incorporé avec le grès, puisque cet émail n'est point attirable à l'aimant ; la matière quartzeuse, au contraire, n'étoit pas dissoute, et se présente dans cette pierre d'émeril, comme dans les autres grès, en grains plus ou moins fins, mais toujours anguleux, tranchants, et très rudes au toucher. Le fer est ici le ciment de nature qui les réunit, les pénètre, et donne à cette pierre plus de dureté qu'aux autres grès ; et cette quantité de fer n'est pas considérable, car, de toutes les mines ou matières ferrugineuses, l'émeril
est celle qui rend le moins de métal. Comme sa substance est quartzeuse, il est très réfractaire au feu, et ne peut se fondre qu'en y ajoutant une grande quantité de matière calcaire, et lui faisant subir l'action d'un feu très violent et long-temps soutenu. Le produit en métal est si petit, qu'on a rejeté l'émeril du nombre des mines dont on peut faire usage dans les forges : mais son excessive dureté le rend plus cher et plus précieux que toutes les autres matières ferrugineuses ; on s'en sert pour entamer et polir le verre, le fer et les autres métaux.

L'émeril est communément d'un brun plus ou moins foncé ; mais, comme nous venons de le dire, il y en a du gris et du plus ou moins rougeâtre. Celui de l'île de Corse est le plus rouge, et quelques minéralogistes l'ont mis au nombre des jaspes.

On ne trouve l'émeril qu'en certains lieux de l'ancien et du nouveau continent : on n'en connoît point en France, quoiqu'il y en ait en grande quantité dans les îles de Jersey et de Guernesey; il se présente en masses solides d'un gris obscur. On en trouve aussi en Angleterre, en Suède, en Pologne, en Espagne, en Perse, aux Indes orientales, et en Amérique, particulièrement au Pérou. Bowles et quelques autres naturalistes assurent que, dans les émerils d'Espagne et du Pérou, il y en a qui contiennent une quantité assez considérable d'or, d'argent, et de cuivre ; mais je ne suis pas informé si l'on a jamais travaillé cette matière pour en tirer avec profit ces métaux.
VOLFRAN.

La plus pesante des concrétions du fer produites par l'intermède de l'eau est le volfran; sa pesanteur provient de l'arsenic qui s'y trouve mêlé, et surpassé de beaucoup celle de toutes les ocres, et même celle des pyrites ferrugineuses et des marcassites arsenicales. La pyrite arsenicale qui en approche le plus par la densité est le mispickel, qui contient aussi plus d'arsenic que de fer. Au reste, le volfran est aussi dur que dense; c'est un schorl mêlé d'arsenic et d'une assez grande quantité de fer; et ce qui prouve que ce fer a été décomposé par l'eau, et que le volfran a été formé par l'intermède de ce même élément, c'est qu'il n'est point attirable à l'aimant. Il se trouve en masses solides d'un noir luisant; sa texture est lamelleuse, et sa substance très compacte. Cependant il y a des volfrans plus ou moins denses et plus ou moins durs les uns que les autres; et je pense, avec M. Romé de l'Isle, qu'on doit regarder comme un volfran le minéral auquel les Suédois ont donné le nom de tungstein, quoiqu'il soit blanc, jaune ou rougeâtre, et qu'il diffère du volfran noir par sa densité, c'est-à-dire par la quantité de fer ou d'arsenic qu'il contient 1.

1. La pesanteur spécifique du volfran noir est de 71195; celle du mispickel ou pyrite arsenicale, de 65225; celle du tungstein blanc d'Altenberg, de 58025; celle du tungstein de Suède, de 49088; et celle du volfran doux, de 41180. (Tables de M. Brisson.)
PYRITES ET MARCASSITES.

Nous avons déjà parlé de la formation des pyrites martiales 1, mais nous n'avons pas indiqué les différentes et nombreuses concrétions qui proviennent de leur décomposition. Ces pyrites contiennent une plus ou moins grande quantité de fer, et qui fait souvent un quart, un tiers, et quelquefois près d'une moitié de leur masse : le surplus de leur substance est, comme nous l'avons dit 2, la matière du feu fixé par l'acide vitriolique; et plus elles contiennent de fer, plus elles sont dures et plus elles résistent à l'action des éléments qui peuvent les décomposer. Nos observateurs en minéralogie prétendent s'être assurés que quand la décomposition de ces pyrites s'opère par la voie humide, c'est-à-dire par l'action de l'air et de l'eau, cette altération commence par le centre de la masse pyriteuse, au lieu que si c'est par le feu qu'elles se décomposent, les parties extérieures de la pyrite sont les premières altérées, et celles du centre les dernières. Quoi qu'il en soit, les pyrites exposées à l'air perdent bientôt leur dureté et même leur consistance : elles ne sont point attirables à l'aimant dans leur état primitif, non plus que dans celui de décomposition; preuve évidente que, dès leur première for-

1. Tome VI, article Pyrite martiale, page 455.
mation, le fer qui leur sert de base étoit lui-même décomposé, et dans un état de rouille ou de chaux produite par l'impression des éléments humides. Les pyrites martiales doivent donc être regardées comme les premières et les plus anciennes concrétions solides du fer, formées par l'intermède de l'eau.

Les pyrites qui se présentent sous une forme cubique et à faces planes contiennent plus de fer, et résistent plus à l'action des éléments humides que les pyrites globuleuses, parce que ces dernières sont composées de moins de fer et des principes du soufre en plus grande quantité que les premières. Toutes ces pyrites, en se décomposant, donnent naissance à plusieurs mines de fer de dernière formation, et produisent les enduits brillants et pyriteux des coquilles des poissons et des bois enfouis dans la terre.

Lorsque les pyrites martiales sont mêlées d'arsenic en quantité sensible, on leur donne le nom de marcassites. En général, les marcassites, comme les pyrites, ne contiennent le fer que dans son état de rouille ou de décomposition par l'humidité qui a détruit sa propriété magnétique : souvent ces pyrites arsénicales sont mêlées de différents métaux; et parmi ces marcassites mélangées de différents métaux, on remarque celles qui sont couleur d'or, que l'on trouve en Italie et au cap Vert.

Dans les marcassites qui contiennent autant et plus de cuivre que de fer, on peut distinguer la marcassite vitrée de Cramer, qui, quoique assez abondante en cuivre, est néanmoins très difficile à fondre ; et à l'égard des marcassites plus arsénicales que ferrugineuses,
nous renvoyons à ce que nous en avons dit à l'article de l'arsenic 1.

MINÉRAUX.

MINE DE FER PYRITIFORME.

Cette concrétion ferrugineuse est indiquée par nos nomenclateurs sous la dénomination de mine brune hépatique, parce que ordinairement elle est d'un brun rougeâtre ou couleur de foie; mais ce caractère étant purement accidentel, équivoque, et commun à d'autres mines de fer, il m'a paru qu'on devoit désigner celle-ci par une dénomination qui la distingue de toutes les autres : je l'appelle mine de fer pyritiforme, parce qu'elle se présente toujours sous la forme de pyrite, et que sa substance n'est en effet qu'une pyrite qui s'est décomposée sans changer de figure. Ces mines se présentent toutes en petites masses plus ou moins concrètes, et qui conservent encore la forme des pyrites qui néanmoins ont perdu leur solidité, leur dureté, leur pesanteur, et qui se sont pour ainsi dire désorganisées et réduites en terre ferrugineuse.

Dans ces mines pyritiformes, comme dans les mines spathiques, la concrétion ferrugineuse se présente sous les formes primitives des pyrites et du spath calcaire; cependant la formation de ces deux mines est très différente : la dernière s'opère par une infiltration du fer dissous, qui peu à peu prend la place du

spath, au lieu que la mine pyritiforme ne reçoit aucune nouvelle matière, et conserve seulement la même quantité de fer qu'elle contenoit dans son état de pyrite ; aussi ces mines pyritiformes sont-elles en général bien moins riches en métal que les mines spathiques.

La forme la plus ordinaire de ces concrétions pyritiformes est en cubes isolés ou groupés, c'est-à-dire la même que celle des pyrites qui ont subi ce changement par la déperdition de l'acide et du feu fixe qu'elles contenoient. Les pyrites arrondies ou aplaties, étant aussi sujettes à cette déperdition par l'impres- sion des éléments humides, peuvent former de même des concrétions ferrugineuses qu'on doit mettre au nombre de ces mines pyritiformes : ni les unes ni les autres ne sont attirables à l'aimant, et aucune n'est assez dure pour faire feu contre l'acier.

MINE DE FER SPATHIQUE.

Cette matière ferrugineuse qui se trouve souvent en grandes masses, et qui est très riche en métal, n'est encore qu'une combinaison du fer décomposé par l'eau; car cette mine spathique n'est point attirable à l'aimant. Le fonds primitif de sa substance étoit un spath calcaire que le fer dissous a pénétré sans en changer la forme ni même la texture apparente. Cette matière, appelée mine de fer spathique parce qu'elle conserve la forme du spath calcaire, se pré-
sente, comme ce spath, en cristaux de forme rhomboïdale; elle est ordinairement blanche ou grisâtre, un peu luisante, assez douce au toucher, et ses cristaux paroissent composés de petites lames toutes semblables à celles du spath calcaire: elle n'a guère plus de dureté que ce même spath; on peut également les rayer ou les entamer au couteau, et ils n'étincellent ni l'un ni l'autre sous le choc de l'acier. Le fer, dissous par l'eau en une rouille très fine, s'est d'abord insinué dans la matière calcaire, et peu à peu a pris sa place en s'y substituant sans changer la figure des espaces, de la même manière que l'on voit les parties dissoutes du fer, du cuivre, des pyrites, etc., s'insinuer dans le bois et le convertir en substance métallique sans déranger la forme de son organisation.

Ces mines de fer spathiques exposées au feu deviennent noires, et elles décrèpitent lorsqu'elles sont réduites en poudre: exposées à l'air, elles conservent leur couleur blanche si elles sont pures et sans autre mélange que la matière calcaire; car celles qui sont mêlées de pyrites perdent peu à peu leur blancheur, et deviennent jaunes ou brunes par l'impression des éléments humides; et comme le fonds de leur essence est une rouille de fer, elles reprennent peu à peu cette forme primitive, et se changent en ocres avec le temps.

La plupart de ces mines spathiques sont en masses informes, et ne présentent la cristallisation spathique qu'à la surface ou à leur cassure: les unes sont aussi compactes que la pierre calcaire, d'autres sont cellulaires; et toutes ont conservé dans leur intérieur la forme rhomboïdale des spaths calcaires: mais, comme
quelques uns de ces spaths affectent une figure lentilculaire, on a aussi trouvé des mines spathiques sous cette forme; et M. Romé de l'Isle observe avec raison que la mine de fer en crête de coq qui se rencontre dans les minières de Baigory a pour base le spath lentilculaire appelé *spath perlé*, dont elle a pris la forme orbiculaire en cristaux groupés par la base, et séparés les uns des autres en écailles plus ou moins inclinées.

HÉMATITE.

On a donné ce nom à certaines concrétions ferrugineuses dont la couleur est d'un rouge de sang plus ou moins foncé; elles proviennent de la décomposition des mines spathiques et pyritiformes, et aussi de toutes les autres mines de fer décomposées par l'impression des éléments humides: les particules ferrugineuses de ces mines, dissoutes et entraînées par la stillation des eaux, se déposent en forme de stalactites dans les fentes et cavités des terres au dessus desquelles gisent les mines de fer en rouille ou en grains. Ces hématites sont de vraies stalactites ferrugineuses, qui, comme les autres stalactites, se présentent sous toutes sortes de formes; elles n'ont que peu de dureté, et ne sont point attirables à l'aimant.

Après les concrétions ferrugineuses produites par l'intermédiaire de l'eau, et qui ne sont point attirables à l'aimant, nous exposerons celles qui ont conservé
MINÉRAUX.

cette propriété magnétique, qu'elles possédoient originalement, ou qu'elles ont acquise de nouveau par le feu après l'avoir perdue par l'impression des éléments humides.

MINE DE FER SPÉCULAIRE.

Cette matière contient du sablon magnétique; car quoiqu'elle soit formée par l'intermède de l'eau, et qu'elle n'ait pas été produite par le feu primitif, elle ne laisse pas d'être attirable à l'aimant. Sa couleur est grise, et les lames dont elle est composée sont quelquefois aussi luisantes que l'acier poli : elle est en même temps très fragile, et se rapproche, par cette propriété, des mines de fer mêlées de mica, qui sont aussi très friables, et dont les lames sont seulement plus minces et plus petites que celles de cette mine spéculaire.

MINES DE FER CRISTALLISÉES PAR LE FEU.

Tous les métaux tenus long-temps en fusion et en repos forment à leur surface des cristaux opaques : la fonte de fer retenue dans le creuset, sous la flamme
Mines de fer cristallisées par le feu.

Du fourneau, en produit de plus ou moins apparents, dont la grandeur et la forme ont été très bien indiquées par M. de Grignon; il est même le premier qui ait fait cette remarque importante: les chimistes ont ensuite recherché si les autres métaux pouvoient, comme le fer, se cristalliser par la longue action du feu; leurs tentatives ont eu tout le succès qu'on pouvait en attendre; ils ont reconnu que non seulement tous les métaux, mais même les demi-métaux et les autres substances métalliques qui donnent des régules, forment également des cristaux, lorsqu'on leur applique convenablement le degré de feu constant et continu qui est nécessaire à cette opération.

Les cristaux de la fonte de fer produits par le feu agissent très puissamment sur l'aiguille aimantée, comme toute autre matière ferrugineuse qui a subi l'action du feu; les mines primordiales de fer qui ont été formées dès le temps de l'incandescence du globe par le feu primitif sont non seulement attirables à l'ai-

1. Mémoires de Physique, pages 71 et 89.
2. Le bismuth est des demi-métaux celui qui se cristallise le plus aisément au feu. « En répétant les expériences de M. l'abbé Mongez, m'écrit M. de Morveau, j'ai vu quelque chose qu'il n'a pas dit, et qui me paroit faire ses idées les plus lumineuses sur la formation des cristaux métalliques; c'est en traitant le bismuth, qui donne de grandes facilités par sa grande fusibilité. Que l'on verse tout uniment du bismuth en fusion sur une assiette de terre, on voit insensiblement paraître des carrés à la surface; quand il y en a un certain nombre, qu'on incline le vaisseau pour faire couler ce qui reste fluide, on a de beaux cubes isolés. C'est ainsi que j'ai obtenu ceux que je joins ici. J'ai pensé que vous ne seriez pas fâché d'en voir un échantillon; il n'y a pas de description qui puisse en dire autant qu'un coup d'œil sur l'objet même. » (Note communiquée par M. de Morveau, en octobre 1789.)
minéraux.

Ils sont, mais souvent parsemées de ces cristaux que la nature a produits avant notre art, et auxquels on n'avait pas fait assez d'attention pour reconnaître que c'étoit une production du feu : mais on a vu depuis ces cristaux dans la plupart des mines de première formation, et même dans quelques autres de formation plus récente, et dans la composition desquelles sont entrés les fragments, et par conséquent les cristaux, des mines primitives.

SABLON MAGNÉTIQUE.

Nous avons déjà parlé de ce sablon ferrugineux et magnétique, qui accompagne la platine et qui se trouve en abondance, non seulement dans les terrains volcanisés, mais même dans plusieurs autres lieux où d'anciens incendies ont produit du mâchefer, dont ces sablons ne sont que des particules désunies; c'est du fer brûlé autant qu'il peut l'être, et qui de toutes ses propriétés métalliques n'a conservé qu'un magnétisme presque égal à celui de l'aimant. Ce fer entièrement décomposé par le feu ne souffre plus d'autre décomposition; il peut séjourner pendant des siècles dans le sein de la terre, ou demeurer exposé aux injures de l'air, sans s'altérer, ni s'amollir, ni se réduire en rouille: il ne peut donc produire aucune stalactite, aucune concrétion; mais il entre assez souvent dans la composition des mines secondaires et des géodes, qui, quoique formées par l'intermédiaire de l'eau,
ne laissent pas d’être attirables à l’aimant; et ce n’est qu’en raison de la quantité de ce sablon magnétique qu’elles jouissent de cette propriété, qui ne leur appartiennent point en propre; mais une petite dose de ce sablon magnétique, mêlée ou interposée dans quelques unes des concrétions dont nous venons de parler, et qui ne sont point du tout attirables à l’aimant, suffit pour leur donner l’apparence du magnétisme, de la même manière qu’une très petite quantité de fer mêlée par la fusion à une masse d’or ou de tout autre métal suffit pour que cet alliage soit sensible à l’action de l’aimant.

Ce sablon magnétique n’est ordinairement qu’une poudre composée de paillettes aussi minces que celles du mica; cependant il se présente quelquefois en masses assez compactes, sous la forme d’une mine de fer noirâtre, qu’on peut regarder comme un aimant de seconde formation; car le sablon ferrugineux dont elle est composée jouit non seulement de la propriété passive d’être attirable à l’aimant, mais encore de la faculté active d’attirer le fer; et ce même sablon, lorsqu’il se trouve mêlé avec la terre dont les géodes sont composées, les rend attirables à l’aimant, tandis que d’autres géodes sont absolument insensibles à son action. Il en est de même de certains granites et autres matières vitreuses de seconde formation, telles que les serpentines, pierres ollaires, etc., dans lesquelles ce sablon magnétique est entré comme partie constituante, et les a rendues plus ou moins sensibles à l’action de l’aimant.
CONCRÉTIONS DE L’OR.

L’or n’est pas susceptible d’altération dans le sein de la terre et ne peut être minéralisé que quand, par le concours de circonstances très rares, il a été dissous et ensuite précipité : on ne doit donc pas être surpris que l’or se présente toujours sous sa forme métallique, soit dans ses mines primordiales, soit dans celles qui sont de formation secondaire ; seulement nous devons observer que, dans les premières, il se montre assez souvent en cristaux, comme ayant subi pendant long-temps et dans un parfait repos l’action du feu primitif qui le tenoit en fusion, au lieu que, dans ses mines de seconde formation, il n’a nulle forme régulière ; ce sont des paillettes, des filets contournés et souvent capillaires, des grains plus ou moins arrondis, des pépites plus ou moins pures, dans les- quelles le caractère de la cristallisation primitive est entièrement effacé, parce que toutes ne sont composées que des détritums de l’or primordial sublimé, fondu, et quelquefois cristallisé par le feu primitif, et que ces masses primordiales et ces cristaux ayant été frottés, roulés, et entraînés par les eaux, n’ont pu conserver leur première figure : ce ne sont en effet que des particules d’or détachées des mines primitives, et qui se sont réunies par leur affinité sous la forme
que leur présentoient les petites cavités où l'eau les déposoit. Aussi ne trouve-t-on l'or cristallisé et l'or de première formation que dans les fentes du quartz et des autres roches vitreuses, tandis que l'or en pépites, en grains, en paillettes, et en filets, se présente dans les montagnes à couches schisteuses, argileuses, ou calcaires, et même dans les terres limoneuses. On peut donc dire qu'il n'y a point d'autres concrétions de l'or que ces mines de seconde formation, dans lesquelles il n'est ni minéralisé ni même altéré, et je doute que nos minéralogistes soient bien fondés à regarder comme minéralisé l'or qui se trouve dans les pyrites; car il n'y est qu'interposé ou disséminé en poudre impalpable, sans être altéré. Le foie de soufre, à la vérité, peut minéraliser les précipités d'or: il faudroit donc supposer, 1° du foie de soufre dans ces pyrites; 2° de l'or d'abord dissous dans le sein de la terre; 3° ce même or précipité de sa dissolution; trois circonstances dont la réunion est si rare, qu'on ne doit pas la compter dans le nombre des effets ordinaires de la nature; et la preuve que l'or n'est qu'interposé, et non minéralisé, dans ces substances auxquelles on a donné le nom de pyrites aurifères, c'est que sa substance n'est point altérée, puisqu'en broyant ces pyrites aurifères on retire, par le lavage ou par la fonte, cet or dans son état métallique.

Tous les métaux qui peuvent se réduire en chaux par l'action du feu ont été calcinés par le feu primitif: l'or et l'argent sont les seuls qui ont résisté à cette action; et, dans les mines primordiales de ces deux métaux, on n'a jamais rencontré de chaux d'or ni d’argent. C'est par cette raison que les concrétions secon-
daires et les minéralisations de ces deux métaux sont aussi rares que celles des autres sont fréquentes : et l'or dans ses mines primordiales étant toujours plus ou moins allié d'argent, sa cristallisation est aussi plus ou moins parfaite, selon son degré de pureté, de sorte que l'or le moins allié d'argent par la nature doit s'être cristallisé le plus régulièrement ; et cette cristallisation de l'or primitif est en forme octaèdre régulière, et absolument pareille à celle que prend l'or épuré par notre art en se cristallisant, lorsqu'on le tient assez long-temps en fusion pour le laisser se solidifier lentement et se cristalliser à sa surface.

CONCRÉTIONS DE L'ARGENT.

L'argent étant moins inaltérable que l'or, et pouvant être attaqué par certains sels dans le sein de la terre, se présente assez souvent sous des formes minéralisées : l'argent de première formation a été fondu ou sublimé, et même cristallisé comme l'or, par le feu primitif. Ces cristaux de l'or et de l'argent primordial sont également opaques, purement métalliques, et presque toujours groupés les uns sur les autres ; ceux de l'argent s'étendent en ramifications sous la forme de feuilles, ou se surmontent comme des végétations et prennent la figure d'arbrisseaux : on les trouve incorporés dans le quartz, ou interposés dans
les fentes et cavités de la roche quartzeuse; et c'est des débris et des détriments de ces premières mines que sont formées toutes celles où ce métal se montre pur ou minéralisé. Il se trouve pur dans les mines de seconde formation lorsque, ayant été divisé et détaché par le frottement des eaux, les particules métalliques entraînées par leur mouvement se déposent et se réunissent en paillettes, en filets, ou en petites masses informes, toutes produites par l'agrégation de ces particules réunies par la force de leur affinité : on rencontre même de l'argent cristallisé dans quelques unes de ces dernières mines, ce qui doit arriver toutes les fois que l'eau n'aura pas divisé les cristaux primitifs, et les aura seulement déplacés et transportés des roches primordiales formées par le feu, et les aura déposés dans les couches de terre produites par le sédiment des eaux. Ainsi l'argent vierge ou pur, formé par le feu dans les mines primitives, se retrouve encore pur dans celles de dernière formation, toutes les fois que, dans son transport, ce métal n'a pas été saisi par les sels de la terre qui peuvent l'altérer ; et même il arrive souvent que ces dernières mines, dont la plupart ne sont formées que du métal réduit en poudre très fine, sont d'un argent plus pur qu'il ne l'étoit dans ses premières mines, parce que l'eau, en le divisant et le réduisant en très petites particules, en a séparé les parties de plomb, de cuivre, ou d'autres matières hétérogènes dont il pouvait être mêlé. Les pépites et concrétions de l'argent dans cet état ne sont donc que du métal pur, ou presque pur, et qui n'a subi d'autre altération que celle de la division et du transport par les eaux.
Mais lorsque ces particules d'argent pur rencontrent dans le sein de la terre les principes des sels et les vapeurs du soufre, elles s'altèrent et subissent des changements divers et très apparents. Le premier de ces changements d'état, et qui tient de plus près à l'argent en état métallique, se présente dans la mine vitrée qui est de couleur grise, dans laquelle le métal a perdu sa rigidité, sa dureté, et qui peut se plier et se couper comme le plomb : dans cette mine, la substance métallique s'est altérée et amollie sans perdre sa forme extérieure ; car elle offre les mêmes cristaux, aussi régulièrement figurés, que ceux des mines primordiales ; et même l'on voit souvent, dans cette mine grise et tendre, des cristaux de l'argent primitif qui sont en partie durs et intacts, et en partie tendres et minéralisés, et cela démontre l'origine immédiate de cette sorte de mine, qui, de toutes celles de seconde formation, est la plus voisine des mines primitives. L'on ne peut donc guère douter que cette mine vitrée ne provienne le plus souvent d'un argent primitif qui aura été pénétré par des vapeurs sulfureuses ; mais elle peut aussi être produite par l'argent pur de dernière formation lorsqu'il reçoit l'impression de ces mêmes vapeurs qui s'exhalent des feux souterrains ; et généralement tout argent vierge de première ou de dernière formation doit subir les mêmes altérations, parce que, dans le premier comme dans le dernier état, le métal est à peu près du même degré de pureté.

Une seconde forme de minéralisation, aussi connue que la première, est la mine d'argent cornée, qui ressemble par sa demi-transparence, sa mollesse, et sa fusibilité, à la lune cornée que nos chimistes obten-
nent de l'argent dissous par l'acide marin ; ce qui leur a fait présumer, peut-être avec fondement, que cette mine cornée provenait d'un argent natif pénétré des vapeurs de cet acide ; mais comme cette mine cornée accompagne assez souvent l'argent primordial dans la roche quartzeuse et dans son état primitif, lequel a précédé l'action et même la formation de l'acide marin, il me semble que l'acide aérien, qui seul existait alors, a dû produire cette altération dans les premières mines, et que ce ne peut être que sur celles de dernière formation que l'acide marin a pu opérer le même effet. Quoi qu'il en soit, cette mine d'argent cornée se rapproche de la mine vitrée par plusieurs rapports, et toutes deux tirent immédiatement leur origine de l'argent pur et natif de première et de dernière formation.

C'est à cette mine cornée que l'on a rapporté la matière molle, légère, blanche ou grise, que M. Schreiber a trouvée aux mines de Sainte-Marie, dont parle M. Monnet, et qui étoit fort riche en argent ; mais cette matière ne contient point de soufre comme la mine d'argent cornée ; et cette différence suffit pour qu'on doive les distinguer l'une de l'autre.

La troisième et la plus belle minéralisation de l'argent est la mine en cristaux transparents et d'un rouge de rubis. Ces beaux cristaux ont quelquefois plusieurs lignes de longueur, et tous ne sont pas également transparents ; il y en a même qui sont presque opaques et d'un rouge obscur ; ils sont ordinairement groupés les

1. Voyez ce que j'ai dit de ces deux mines d'argent vitrée et cornée dans le septième volume de cette Histoire, page 565.
uns sur les autres, et souvent ils sont mêlés de cristaux gris qui sont entièrement opaques.

De la décomposition de cette mine et des deux précédentes se forment d'autres mines, dont l'une des plus remarquables est la mine d'argent noire. M. Lehmann a observé que cette mine d'argent noire paraissent devoir sa formation à la décomposition de mines d'argent plus riches, telles que la mine d'argent rouge ou la mine d'argent vitrée. Il ajoute « que cette mine noire est assez commune au Hartz, en Hongrie, en Saxe, etc., et qu'à Freyberg on la trouvait jointe à la mine d'argent vitrée. » Et nous pouvons ajouter qu'elle est très commune au Pérou et au Mexique, où les Espagnols lui donnent le nom de negrillo. Cette mine noire est de dernière formation, puisqu'elle provient de la décomposition des autres : aussi se trouve-t-elle encore souvent accompagnée d'argent en filets, qui n'est formé lui-même que de l'agrégation des petites particules détachées des mines primitives de ce métal par le mouvement et la stillation des eaux.

Au reste, les concretions les plus communes de l'argent sont celles où ce métal, réduit en poudre, se trouve interposé et comme incorporé dans différentes terres et pierres calcaires ou vitreuses. Ces concretions se présentent souvent en masses très considérables et plus ou moins pesantes dans le rapport de la quantité de l'argent en poudre qu'elles contiennent; et quelquefois cette quantité fait plus de moitié de leur masse; elles sont formées par l'intermédiaire de l'eau qui a charrié et déposé ces particules d'argent avec des terres calcaires ou vitreuses qui, s'étant ensuite
resserrées, consolidées, et durcies par le dessèchement, ont formé ces concrétions aussi riches que faciles à réduire en métal.

Et au sujet de la réduction de l'argent minéralisé en métal pur, nous croyons devoir ajouter à ce que nous en avons dit le extrait d'une lettre de M. Polony, médecin du roi au cap François, qui, pendant un assez long séjour au Mexique, a suivi les opérations de ce travail. Ce savant observateur y rend compte des procédés actuellement en usage au Mexique. « On réduit, dit-il, en poudre impalpable le minerai d'argent, dont on forme une pâte liquide en l'humectant successivement jusqu'à ce que toute la masse soit de la même consistance : on y ajoute alors une certaine composition appelée magistral, et on repasse toute la pâte au moulin, afin d'y incorporer uniformément ce magistral qui doit opérer la déminéralisation. On fait ensuite avec cette pâte différentes pyramides d'environ dix-huit à vingt quintaux chacune ; on les laisse fermenter trois jours sans y toucher : au bout de ce temps, un homme enfoncé la main dans la pâte, et juge par le degré de chaleur si la déminéralisation s'est opérée ; s'il juge le contraire, on étend la pâte, on l'humecte de nouveau, on y ajoute du magistral, et on la réduit encore en pyramides, qu'on laisse de nouveau fermenter pendant trois jours : après cela on étend la pâte sur des glacis à rebords ; on y jette une pluie de mercure qu'on y incorpore intimement en pétrissant la pâte, on le remet en tas, et trois ou quatre jours après, à l'aide de différentes lotions, on ramasse

1. Voyez tome VII, l'article Argent, page 566.
le mercure qui se trouve chargé de tout l'argent qui s'est déminéralisé pendant l'opération. »

M. Polony se propose de publier la composition de ce magistral, qui n'est pas encore bien connue. Cependant je soupçonne que ce composé n'est que du sel marin auquel on ajoute quelquefois de la chaux ou de la terre calcaire, comme nous l'avons dit à l'article de l'Argent; et dans ce cas le procédé décrit par M. Polony, et qui est actuellement en usage au Mexique, ne diffère de celui qu'on emploie depuis long-temps au Pérou que pour le temps où l'on fait tomber le mercure sur le minerai d'argent.

CONCRÉTIONS DU CUIVRE.

Le cuivre de première formation, fondu par le feu primitif, et le cuivre de dernière formation, cémenté sur le fer par l'intermède de l'eau, se présentent également dans leur état métallique: mais la plupart des mines de cuivre sont d'une formation intermédiaire entre la première et la dernière. Ce cuivre de seconde formation est un minerai pyriteux ou plutôt une vraie pyrite, dans laquelle ce métal est intimement uni aux principes du soufre et à une plus ou moins grande quantité de fer. Cette mine de cuivre en pyrite jaune, est, comme nous l'avons dit, très difficile à réduire

en métal; et néanmoins c’est sous cette forme que le cuivre se présente le plus communément. Ces pyrites ou minerais cuivreux sont d’autant moins durs qu’ils contiennent plus de cuivre et moins de fer; et lorsque ce dernier métal s’y trouve en grande quantité, ce minéral ne peut alors se traiter avec profit, et doit être rejeté dans les travaux en grand.

Ces minerais cuivreux n’affichent aucune figure régulière, et se trouvent en masses informes dans des filons souvent très étendus et fort profonds; et l’on observe que, dans les parties de ces filons qui sont à l’abri de toute humidité, ces minerais pyriteux conservent leur couleur qui est ordinairement d’un jaune verdâtre: mais on remarque aussi que, pour peu qu’ils subissent l’impression de l’air humide, leur surface s’irise de couleurs variées, rouges, bleues, vertes, etc. Ces légères efflorescences indiquent le premier degré de la décomposition de ces mines de cuivre.

Quelques uns de ces minerais pyriteux contiennent non seulement du cuivre et du fer, mais encore de l’arsenic et une petite quantité d’argent. L’arsenic change alors leur couleur jaune en gris, et on leur donne le nom de mines d’argent grises: mais ce ne sont au vrai que des pyrites cuivreuses teintes et imprégnées d’arsenic, et mêlées d’une si petite quantité d’argent qu’elles ne méritent pas de porter ce nom.

C’est de la décomposition du cuivre en état métallique ou dans cet état pyriteux que proviennent toutes les autres minéralisations et concrétions de ce métal dont nous avons déjà donné quelques indices
t. Les

mines de cuivre vitreuses proviennent de la décomposition des pyrites cuivreuses ou du cuivre, qui de l'état métallique a passé à l'état de chaux. Ces mines sont ordinairement grises, et quelquefois blanches, et même rouges, lorsqu'elles sont produites par la mine grise qui contient de l'arsenic; et la décomposition de ce minéral cuivreux et arsenical produit encore la mine à laquelle on a donné le nom de mine de cuivre hépatique, parce qu'elle est souvent d'un rouge brun couleur de foie; elle est quelquefois mêlée de bleu, et chatoyante à sa superficie; elle se présente ordinairement en masses informes dont la surface est lisse et luisante, ou hérissée de cristaux bleus qui ressemblent aux cristaux d'azur qu'obtiennent nos chimistes; ils sont seulement plus petits et groupés plus confusément.

Mais la plus belle de toutes les minéralisations ou concrétions du cuivre est celle que tous les naturalistes connoissaient sous le nom de malachite; nous en avons expliqué l'origine et la formation, et nous avons peu de chose à ajouter à ce que nous en avons dit. On pourra voir au Cabinet du Roi les superbes morceaux de malachites soyeuses, cristallisées, et mamelonnées, dont l'auguste impératrice des Russies a eu la bonté de me faire don: on peut reconnaître dans ces malachites toutes les variétés de cette concrétion métallique; on pourroit en faire des bijoux et de très belles boîtes, si le cuivre, quoique dénature au fer,

1. La malachite est une pierre opaque, d'un vert foncé, semblable à celui de la mauve, d'où elle a tiré son nom. Cette pierre est très propre à faire des cachets. (Plin. liv. XXXVII, chap. viii.)
n'y conservoit pas encore quelques unes de ses qualités malfaisantes.

PIERRE ARMÉNIENNE.

Je mets la pierre arménienne au nombre des converations du cuivre, et je la sépare du lapis-lazuli, auquel elle ne ressemble que par la couleur : on l'a nommée pierre arménienne parce qu'elle nous venoit autrefois d'Arménie ; mais on en a trouvé en Allemagne et dans plusieurs autres contrées de l'Europe. Elle n'est pas aussi dure que le lapis, et sa couleur bleue est mêlée de verdâtre, et quelquefois tachée de rouge. La pierre arménienne se trouve dans les mines de cuivre, et a reçu sa teinture par ce métal, tandis que le lapis-lazuli a été teint par le fer.

La pierre arménienne diffère encore du lapis-lazuli en ce qu'elle est d'une couleur bleue moins intense, moins décidée, et moins fixe; car cette couleur s'évanouit au feu, tandis que celle du lapis n'en souffre aucune altération : aussi c'est avec le lapis qu'on fait le beau bleu d'outremer qui entre dans les émaux; et c'est de la pierre arménienne qu'on fait l'azur ordinaire des peintres, qui perd peu à peu sa couleur et devient vert en assez peu de temps.

Dans la pierre arménienne le grain n'est pas à beau-

1. M. Hill se trompe sur la nature du vrai lapis, qu'il regarde ainsi que la pierre arménienne, comme des mines de cuivre, et il paroit même les confondre dans la description qu'il en donne.
coup près aussi fin que dans le lapis, et elle ne peut recevoir un aussi beau poli ; elle entre en fusion sans intermède, et résiste beaucoup moins que le lapis à l'action du feu ; elle y perd sa couleur, même avant de se fondre ; enfin on peut en tirer une certaine quantité de cuivre. Ainsi cette pierre arménienne doit être mise au nombre des mines de ce métal, et même on trouve quelquefois de la malachite et de la pierre arménienne dans le même morceau. Cette pierre n'est donc pas de la nature du jaspe, comme l'a dit un de nos savants chimistes, puisqu'elle est beaucoup moins dure qu'aucun jaspe, et même moins que le lapis-lazuli ; et comme elle entre en fusion d'elle-même, je crois qu'on doit la mettre au nombre des concrétions de cuivre mêlées de parties vitreuses et de parties calcaires, et formées par l'intermède de l'eau.

Au reste, les concrétions les plus riches du cuivre se présentent quelquefois, comme celles de l'argent, en ramifications, en végétations, et en filets déliés et de métal pur ; mais, comme le cuivre est plus susceptible d'altération que l'argent, ces mines en filets et en cheveux sont bien plus rares que celles de l'argent : elles ont la même forme.

CONCRÉTIONS DE L'ÉTAIN.

Les mines primordiales de l'étain se trouvent dans une roche quartzéuse très dure, où ce métal s'est in-
corporé après avoir été réduit en chaux par le feu primitif; les cristaux d'étain sont des mines secondaires produites par la décomposition des premières: l'eau, en agissant sur ces mines formées par le feu, en a détaché, divisé les parties métalliques, qui se sont ensuite réunies en assez grand volume, et ont pris, par leur affinité, des formes régulières comme les autres cristaux produits par l'intermède de l'eau. Ces cristaux, uniquement formés de la chaux d'étain primitive plus ou moins pure, ne recèlent aucun autre métal, et sont seulement imprégnées d'arsenic, qui s'y trouve presque toujours intimement mêlé, sans néanmoins en avoir altéré la substance. Ainsi cette chaux d'étain, cristallisée ou non, n'est point minéralisée, et l'on ne connaît aucune minéralisation ou concrétion secondaire de l'étain, que quelques stalactites qui se forment de la décomposition des cristaux, et qui se déposent en masses informes dans les petites cavités de ces mines: ces stalactites d'étain sont souvent mêlées de fer, et ressemblent assez aux hématites; et il me semble qu'on ne doit regarder que comme une décomposition plus parfaitement achevée l'étain natif dont parle M. Romé de l'Isle; car on ne peut attribuer sa formation qu'à l'action de l'eau, qui aura pu donner un peu de ductilité à cette chaux d'étain plus épurée qu'elle ne l'étoit dans les cristaux dont elle provient.
CONCRÉTIONS DU PLOMB.

Le plomb n'existe pas plus que l'étain en état métallique dans le sein de la terre; tous deux, parce qu'il ne faut qu'une médiocre chaleur pour les fondre, ont été réduits en chaux par la violence du feu primitif, en sorte que les mines primordiales du plomb sont des pyrites que l'on nomme galènes, et dont la substance n'est que la chaux de ce métal unie aux principes du soufre: ces galènes affectent de préférence la forme cubique; on les trouve quelquefois isolées, et plus souvent groupées dans dans la roche quartzeuse; leur surface est ordinairement lisse, et leur texture est composée de lames ou de petits grains très serrés.

Le premier degré de décomposition dans ces galènes ou pyrites de plomb s'annonce, comme dans les pyrites cuivreuses, par les couleurs d'iris qu'elles prennent à leur superficie; et lorsque leur décomposition est plus avancée, elles perdent ces belles couleurs avec leur dureté, et prennent les différentes formes sous lesquelles se présentent les mines de plomb de seconde formation, telles que la mine de plomb blanche, qui est sujette à de grandes variétés de forme et de couleur; car les vapeurs souterraines, et surtout celle du foie de soufre, changent le blanc de cette mine en brun et en noir.
La mine de plomb verte est aussi de seconde formation ; elle seroit même toute semblable à la mine blanche, si elle n’était pas teinte par un cuivre dissous qui lui donne sa couleur verte. Enfin la mine de plomb rouge est encore de formation secondaire. Cette belle mine n’êtoit pas connue avant M. Lehmann, qui m’en adressa, en 1766, la description imprimée : elle a été trouvée en Sibérie, à quelque distance de Catherinebourg ; elle se présente en cristallisations bien distinctes, et paraît être colorée par le fer.

Au reste, les galènes ou mines primordiales du plomb sont souvent mêlées d’une certaine quantité d’argent ; et lorsque cette quantité est assez considérable pour qu’on puisse l’extraire avec profit, on donne à ces mines de plomb le beau nom de mines d’argent. Les galènes se trouvent aussi très souvent en masses informes et mêlées d’autres matières minérales et terreuses, qui servent aux minéralisations secondaires de ces mines en aidant à leur décomposition.

CONCRÉTIONS DU MERCURE.

Le cinabre est la mine primordiale du mercure, et l’on peut regarder le vif-argent coulant comme le premier produit de la décomposition du cinabre : il se réduit en poudre lorsqu’il se trouve mêlé de parties
pyriteuses; mais cette poudre, composée de cinabre et du fer des pyrites, ne prend point de solidité, et l'on ne connoît d'autres concrétions du mercure que celles dont M. Romé de l'Isle fait mention sous le titre de mercure en mine secondaire, mine de mercure cornée volatile, ou mercure doux natif. « Cette mine secondaire de mercure, dit cet habile minéralogiste, a été découverte depuis peu parmi les mines de mercure en cinabre du duché de Deux-Ponts; c'est du mercure solidifié et minéralisé par l'acide marin, avec lequel il paraît s'être sublimé dans les cavités et sur les parois de certaines mines de fer brunes ou hépatiques, de même que le mercure coulant dont cette mine est souvent accompagnée. »

J'ai dit, d'après le témoignage des voyageurs, qu'on ne connoissoit en Amérique qu'une seule mine de mercure à Guancavelica; mais M. Dombey, qui a examiné avec soin les terrains à mine du Pérou et du Chili, a trouvé des terres imprégnées de cinabre aux environs de Coquimbo, et il m'a remis pour le Cabinet du Roi quelques échantillons de ces terres, qui sont de vraies mines de mercure. Les Espagnols les ont autrefois exploitées; mais celles de Guancavelica s'étant trouvées plus riches, celles de Coquimbo ont été abandonnées jusqu'à ce jour, ou les éboulements produits par des tremblements de terre dans ces mines de Guancavelica ont obligé le gouvernement espagnol de revenir aux anciennes mines de Coquimbo avec plus d'avantage qu'au paravant, par la découverte qu'a faite M. Dombey, de l'étendue de ces mines dans plusieurs terrains voisins qui n'avoient pas été fouillés. D'ailleurs ce savant naturaliste m'assure qu'indépendam-
CONCRÉTIONS DU MERCURE.

Il s'en trouve d'autres aux environs de Lima, dans les provinces de Cacatambo et Guanuco, que le gouvernement espagnol n'a pas fait exploiter, et dont cependant il pourrait tirer avantage : il y a même toute apparence qu'il s'en trouve au Mexique ; car M. Polony, médecin du roi au Cap à Saint-Domingue, fait mention d'une mine de mercure dont il m'envoie des échantillons avec plusieurs autres mines d'or et d'argent de cette contrée du Mexique 1.

CONCRÉTIONS DE L'ANTIMOINE.

On ne connoit point de régule d'antimoine natif, et ce demi-métal est toujours minéralisé dans le sein de la terre. Il se présente en minerai blanc lorsqu'il est imprégné d'arsenic, qui lui est si intimement uni, qu'on ne peut les séparer parfaitement. L'antimoine se trouve aussi en mine grise, qui forme assez souvent des stalactites ou concrétions dont quelques unes ressemblent à la galène de plomb. Cette mine grise d'antimoine est quelquefois mêlée d'une quantité considérable d'argent, et, par sa décomposition, elle produit une autre mine à laquelle on donne le nom de mine d'argent en plumes, quoiqu'elle contienne

1. Lettre de M. Polony à M. le comte de Buffon, datée du Cap à Saint-Domingue, 20 octobre 1785.
CONCRÉTIONS DU BISMUTH.

Les concrétions de ce demi-métal sont encore plus rares que celles de l'antimoine, parce que le bismuth se présente plus souvent dans son état métallique que sous une forme minéralisée; cependant il est quelquefois, comme l'antimoine, altéré par l'arsenic, et mêlé de cobalt, sans néanmoins être entièrement minéralisé. Sa surface paroit alors irisée et chatoyante, ou chargée d'une efflorescence semblable aux fleurs de cobalt; et c'est sans doute de la décomposition de cette mine que se forme celle dont M. Romé de l'Isle donne la description, et qui n'étoit pas connue des naturalistes avant lui.

1. Voyez tome VIII, page 96, l'article Antimoine.
CONCRÉTIONS DU ZINC.

Le zinc ne se trouve pour ainsi dire qu'en concrétions, puisqu'on ne le tire que de la pierre calaminaire ou desblendes, et que nulle part il ne se trouve, dans son état de régule, sous sa forme de demi-métal. Le zinc n'est donc qu'un produit de notre art; et comme sa substance est non seulement très volatile, mais même fort inflammable, il paraît qu'il n'a été formé par la nature qu'après toutes les autres substances métalliques: le feu primitif l'auroit brûlé au lieu de le fondre ou de le réduire en chaux, et il est plus que probable qu'il n'existoit pas alors, et qu'il n'a été formé, comme le soufre, que par les détriments des substances combustibles: il a en même temps été saisi par les matières ferrugineuses; car il se trouve en assez grande quantité dans plusieurs mines de fer aussi bien que dans les blendes et dans la calamine, qui toutes sont composées de zinc, de soufre, et de fer. Indépendamment donc de la pierre calaminaire et des blendes, qui sont les substances les plus abondantes en zinc, plusieurs mines de fer de dernière formation peuvent être regardées comme des mines de ce demi-métal; c'est par son affinité avec le fer que cette matière inflammable et volatile s'est fixée, et l'on reconnaît cette union intime et con-
stante du zinc avec le fer par la décomposition des blendes et de la calamine, qui se réduisent également en une sorte d'ocre dans laquelle il se trouve souvent plus de fer que de zinc.

On ne doit donc pas être surpris que le cuivre jaune ou laiton soit quelquefois sensiblement attirable à l'aimant, surtout après avoir été frappé ou fléchi et tordu avec force, parce qu'étant composé de cuivre rouge et de zinc le laiton contient toujours une certaine quantité du fer qui étoit intimement mêlé dans les blendes ou dans la pierre calaminaire ; et c'est par la même raison que le régule de zinc, qui n'est jamais entièrement privé de fer, se trouve plus ou moins attirable à l'aimant. Il en est de même des régules de cobalt, de nickel, et de manganèse : tous contiennent du fer, et tous sont plus ou moins susceptibles des impressions magnétiques.

CONCRÉTIONS DE LA PLATINE.

Je crois devoir donner ici par extrait quelques faits très bien présentés par M. Le Blond, médecin de l'Université de Lima, qui, pendant un séjour de trois ans au Pérou, a fait de bonnes observations sur le gisement des mines d'or et de platine, et qui les a communiquées à l'Académie des Sciences, au mois de juin 1785.
Ce savant observateur dit avec raison que les mines primordiales de l'or et de la platine dans l'Amérique méridionale gisent sur les montagnes des Cordillères, dans les parties les plus élevées, d'où elles ont été détachées et entraînées par les eaux dans les vallées et les plaines les plus basses, au pied de ces montagnes.

« C'est au Choco, dit M. Le Blond, que se manifestent d'une manière très sensible les différents lits de pierres arrondies et de terres entassées qui forment les mines de transport. Ce pays est entièrement comme le réservoir où viennent aboutir presque toutes les eaux qui descendent des provinces de Pasto, Plata, etc., et conséquemment le lieu le plus bas, et qui doit être le plus abondamment pourvu des corps métalliques qui auront été détachés et entraînés par les eaux des lieux les plus élevés.

En effet, il est rare au Choco de ne pas trouver de l'or dans presque toutes ces terres transportées que l'on fouille ; mais c'est uniquement à peu près au nord de ce pays, dans deux districts seulement, appelés Citara et Novita, qu'on le trouve toujours mêlé plus ou moins avec la platine, et jamais ailleurs. Il peut y avoir de la platine autre part ; mais elle n'a sûrement pas encore été découverte dans aucun autre endroit de l'Amérique.

Les deux paroisses de Novita et Citara sont, comme on vient de le dire, les deux seuls endroits où l'on trouve les mines d'or et de platine. On les exploite par le lavage, qui est la manière usitée pour toutes les mines de transport de l'Amérique méridionale... L'or et la platine se trouvent confondus et mê-
lés dans les terres déposées par les eaux, sans aucune marque qui puisse faire distinguer une mine formée sur les lieux... Lorsqu’on a obtenu par le lavage l’or et la platine de la terre dans laquelle ces métaux sont mêlés, on les sépare grain par grain avec la lame d’un couteau ou autrement, sur une planche bien lisse ; et s’il reste dans la platine, après l’avoir ainsi séparée, quelques légères paillettes d’or dont le travail emporterait trop de temps, on les amalgame avec du vif-argent, à l’aide des mains, et ensuite d’une masse ou pilon de bois, dans une espèce d’auge de bois dur comme le gaïac, et on parvient de cette manière, quoique assez imparfaitement, à les unir au mercure, dont on les dégage après par le moyen du feu.

» On ne nie pas qu’il n’y ait quelques mineurs qui fassent cet amalgame dans des mortiers avec leurs piliers de fer ou de cuivre ; mais il n’est pas vraisemblable d’attribuer à cette manipulation l’aplatissement de quelques grains de platine, puisqu’un grain de ce métal, très difficile à aplatisner, ne pourrait jamais l’être étant joint à dix mille autres qui ne le sont pas, et que d’ailleurs on trouve dans cette matière, telle qu’on la retire de la terre, des grains aplatis mêlés avec des grains d’or ¹, qu’on distingue très bien à la simple vue, et qui n’y seraient sûrement pas si elle avait été soumise à l’amalgame.

¹. Dans la grande quantité de platine que M. Dombey a rapportée du Pérou, et dont il a remis une partie au Cabinet du Roi, il s’est trouvé un de ces grains de platine aplatis de trois lignes de longueur sur deux lignes de largeur, et cela confirme ce que dit à ce sujet M. Le Blond. C’est le plus grand grain de platine que j’aie vu. M. Dombey m’a assuré qu’il en connaissait un de trois onces pesant qui étoit entre les mains de don Antonio-Joseph Areche, visiteur-général du Pé-
CONCRÉTIONS DE LA PLATINE.

C'est ce même amalgame mal rassemblé qui laisse quelquefois après lui des gouttes de vif-argent qu'on a cru devoir exister dans la platine ; c'est une erreur dont on doit d'autant mieux se désabuser, que, excepté les mines de Guancavelica au Pérou, on n'a pu découvrir jusqu'à présent aucune mine de mercure ou de cinabre dans toute l'Amérique espagnole, nonobstant les grandes récompenses promises par le gouvernement.

C'est aux deux cours des monnoies de Sainte-Foi et de Popayan que se porte tout l'or du Choco pour y être monnoyé : là se fait un second triage de la platine qui pourroit être restée avec l'or : les officiers royaux la gardent ; et quand il y en a une certaine quantité, ils vont, avec des témoins, la jeter dans la rivière de Bogota, qui passe à deux lieues de Sainte-Foi, et dans celle de Caouca, à une lieue de Popayan. Il paroit qu'aujourd'hui ils l'envoient en Espagne.

On trouve toujours la platine mêlée avec l'or, dans la proportion d'une, deux, trois, quatre onces, et davantage, par livre d'or. Les grains de ces deux matières ont à peu près la même forme et la même grosseur ; ce qui est très digne d'être remarqué.

Si la proportion de la platine avec l'or est plus considérable, alors on travaille peu la mine, ou même on l'abandonne, parce que la quantité de ces deux rou, et qui a été envoyé à la Société royale de Biscaye. Ce gros grain est de la même figure que les petits, et tous paraissent avoir été fondus par le feu des volcans.

métaux ensemble étant à peu près la même que celle d’une autre mine où l’on ne tireroit que de l’or pur, il s’ensuit que quand la proportion de la platine est trop considérable, celle de l’or, décroissant en même raison, n’offre plus les mêmes avantages pour pouvoir la travailler avec profit ; et c’est pour cela qu’on la laisse. Il ne seroit pas moins intéressant de s’assurer si cette substance ne se rencontrerait pas seule et sans mélange d’or dans des mines qui lui seroient propres.

» La platine, ainsi que l’or qui l’accompagne, se trouve de toute grosseur, depuis celle d’une fine poussière jusqu’à celle d’un poïs, et l’on ne rencontre pas de plus gros morceaux de platine, ou du moins ils doivent être bien rares; car, quelque peine que je me sois donnée, je n’ai pu m’en procurer aucun, et je n’en ai vu qu’un seul à peu près de la grosseur d’un œuf de pigeon 1. J’ai vu des morceaux d’or qui m’ont paru fondu naturellement beaucoup plus considérables.

» Il est vraisemblable que, comme l’or a ses mines propres, la platine peut avoir aussi les siennes, d’où elle a été détachée par une force quelconque, et entraînée par les eaux dans les mines de transport où on la trouve ; mais ces mines propres, où sont-elles? c’est ce qu’on n’a pas encore pris la peine d’examiner.

» Puisque l’or et la platine se trouvent, dans leurs mines de transport, à peu près de même gros-

1. Ce morceau est le même dont nous avons parlé ci-devant, d’après M. Dombey, page 172, dans la note; car M. Le Blond dit, comme M. Dombey, que ce morceau fut remis à don Areche, intendant du Pérou, pour en faire présent à la Société royale de Biscaye, qui doit actuellement le posséder. »
CONCRÉTIONS DE LA PLATINE. 175

seur, il semblerait que ces deux métaux doivent avoir aussi à peu près une même source, et peut-être les mêmes moyens de métallisation; ils diffèrent cependant essentiellement en couleur, en malléabilité, et en poids. Ne pourroit-on pas plutôt présumer, d'après les scories de fer qui accompagnent toujours plus ou moins la platine, qu'elle n'est elle-même qu'une modification de ce métal par le feu, d'une façon jusqu'ici inconnue, qui la prive de la couleur, de la malléabilité, et de la pesanteur spécifique de l'or?... M. Bergman a été sûrement mal informé quand il dit que la force magnétique du fer dans la platine vient vraisemblablement de la trituration qu'on lui fait éprouver dans la meule de fer pour séparer l'or par l'amalgame, et que c'est au moins de là que vient le mercure qui s'y trouve; qu'il arrive peu de platine en Europe qui n'ait passé par cette meule 1. Cette meule dont parle M. Bergman n'existe pas; au moins n'en ai-je jamais entendu parler. Quant au mercure, il a raison, et cette substance se trouve assez souvent dans la platine. »

Je dois joindre à ces observations de M. Le Blond quelques réflexions. Je ne pense pas que le fer seul puisse se convertir en platine, comme il paroit le présumer. J'ai déjà dit que la platine étoit composée d'or dénaturé par l'arsenic, et de fer réduit en sablon magnétique par l'excessive violence du feu, et j'ai fait faire quelques essais pour vérifier ma présomption. M. l'abbé Rochon a bien voulu se charger de ce travail, et j'ai aussi prié M. de Morveau de faire les mê-

1. *Journal de Physique*, 1778, page 527.
mes expériences. L’or fondu avec l’arsenic devient blanc, cassant, et grenu; il perd sa couleur, et prend en même temps beaucoup plus de dureté. Cet or altéré par l’arsenic, fondu une seconde fois avec le sablon ferrugineux et magnétique qui se trouve mêlé avec la platine naturelle, forme un alliage qui approche beaucoup de la platine, tant par la couleur que par la densité. M. l’abbé Rochon m’a déjà remis le produit de nos deux premiers essais, et j’espère que nous parviendrons à faire de la platine artificielle par le procédé suivant, dont seulement il faudra peut-être varier les doses et les degrés de feu.

Faites fondre un gros d’or le plus pur avec six gros d’arsenic; laissez refroidir le bouton; pulvérisez cet or fondu avec l’arsenic dans un mortier d’agate; mêlez cette poudre d’or avec trois gros du sablon magnétique qui se trouve mêlé à la platine naturelle; et comme la fusion de ce mélange exige un feu très violent, et qu’il faut que le sablon ferrugineux s’incorpore intimement avec l’or, vous ajouterez à ces matières une bonne quantité de nitre, qui produira assez d’air inflammable pour rendre la fusion parfaite, et vous obtiendrez par cette opération un produit très semblable à la platine naturelle. Il est certainement plus possible de faire de la platine artificielle que de convertir la platine en or; car, quelques efforts qu’aient faits nos chimistes pour en séparer ce métal précieux, ils n’ont pu réussir, et de même ils n’ont pu en séparer absolument le fer qu’elle contient; car la platine la plus épurée, qui paroit ne pas être attirable à l’aimant, contient néanmoins dans son intérieur des particules de sablon magnétique, puisqu’en
la réduisant en poudre, on y retrouve ces particules ferrugineuses qu’on peut en retirer avec l’aimant.

Au reste, je ne sais pas encore si nous pourrons re-
tirer l’or de ces boutons de platine artificielle, qui me paroissent avoir toutes les propriétés de la platine naturelle; seulement il me paraît que, quand l’or a été dénaturé par l’arsenic, et intimement mêlé avec le sablon ferrugineux et magnétique, il n’y a guère moyen de lui rendre sa ductilité et sa première na-
ture, et que, par conséquent, il sera toujours très difficile de tirer de la platine tout l’or qu’elle contient, quoique la présence de ce métal dans la platine nous soit démontrée par son poids spécifique, comme la présence du fer l’est aussi par son magnétisme.

PRODUITS VOLCANIQUES.

Nous avons parlé, en plusieurs endroits de cet ou-
vrage, des basaltes et des différentes laves produites par le feu des volcans; mais nous n’avons pas fait men-
tion des différentes substances qu’on est assez surpris de trouver dans l’intérieur de ces masses vitrifiées par
la violence du feu; ce sont des cailloux, des agates, des hyacinthes, des chrysolites, des grenats, etc., qui tous ont conservé leur forme, et souvent leur
couleur. Quelques observateurs ont pensé que ces
pierres renfermées dans les laves, même les plus du-
res, ne pouvaient être que des stalactites de ces mêmes laves, qui s'étoient formées dans leurs petites cavités intérieures long-temps après leur refroidissement, en sorte qu'elles en tiroient immédiatement leur origine et leur substance: mais ces pierres, bien examinées et comparées, ont été reconnues pour de vrais cailloux, cristaux, agates, hyacinthes, chrysolites, et grenats, qui tous étoient formés précédemment, et qui ont seulement été saisis par la lave en fusion lorsqu'elle rouloit sur la surface de la terre, ou qu'elle couloit dans les fentes des rochers hérissés de ces cristaux; elle les a, pour ainsi dire, ramassés en passant, et ils se sont trouvés enveloppés plutôt qu'interposés dans la substance de ces laves dès le temps qu'elles étoient en fusion.

M. Faujas de Saint-Fond nous a donné une bonne description très détaillée des chrysolites qu'il a trouvées dans les basaltes et laves des anciens volcans du Vivarais. Il ne s'est pas trompé sur leur nature, et les a reconnues pour de vraies chrysolites, dont les unes, dit-il, «sont d'un vert clair tirant sur le jaune, couleur de la véritable chrysolite, quelques unes d'un jaune de topaze, certaines d'une couleur noire luisante comme le schorl, de sorte que dans l'instant on croit y reconnoître cette substance; mais en prenant au soleil le vrai jour de ces grains noirs, et en les examinant dans tous les sens, on s'aperçoit que cette couleur n'est qu'un vert noirâtre qui produit cette teinte sombre et foncée. » En effet, cette substance vitreuse n'est point du schorl, mais du cristal de roche teint comme tous les autres cristaux et chrysolites vertes ou jaunâtres, lesquelles, étant très réfrac-
PRODUITS VOLCANIQUES.

179

taires au feu, n'ont point été altérées par la chaleur
de la lave en fusion, tandis que les grenats et les
schorls, qui sont fusibles, ont souvent été dénaturés
par cette même chaleur. Ces schorls ont perdu, par
l'action du feu volcanique, non seulement leur cou-
leur, mais une portion considérable de leur sub-
stance; les grenats en particulier qui ont été volcanisés
sont blancs, et ne pèsent spécifiquement que 2468.4,
tandis que le grenat dans son état naturel pèse 41888.
Le feu des laves en fusion peut donc altérer et peut-
être fonder les schorls, les grenats, et les feld-spaths;
mais les cristaux quartzez, de quelque couleur qu'ils
soient, résistent à ce degré de feu, et ce sont ces
cristaux colorés et trouvés dans les basaltes et les la-
ves auxquels on a donné les noms de chrysolites, de
topazes, et d'hyacinthes des volcans.

DES BASALTES, DES LAVES,
ET DES LAITIERS VOLCANIQUES.

Comme M. Faujas de Saint-Fond est, de tous les
naturalistes, celui qui a observé avec le plus d'atten-
tion et de discernement les différents produits volca-
niques, nous ne pouvons mieux faire que de donner
ici par extrait les principaux résultats de ses observa-
tions. « Le basalte, dit-il, se présente sous la forme
d'une pierre plus ou moins noire, dure, compacte, pesante, attri- table à l'aimant, susceptible de recevoir le poli, fusible par elle-même sans addition, donnant plus ou moins d'étincelles avec le briquet, et ne faisant aucune effervescence avec les acides.

Il y a des basaltes de forme régulière en prismes, depuis le triangle jusqu'à l'octogone, qui forment des colonnes articulées ou non articulées, et il y en a d'autres en forme irrégulière; on en voit de grandes masses en tables, en murs plus ou moins inclinés, en rochers plus ou moins pointus et quelquefois isolés, en remparts escarpés, et en blocs ou fragments raboteux et irréguliers. Les basaltes à cinq, six, et sept faces, se trouvent plus communément que ceux à trois, quatre, ou huit faces: ils sont tous de forme prismatique, et la grandeur de ces prismes varie prodigieusement; car il y en a qui n'ont que quatre à cinq lignes de diamètre sur un pouce et demi ou deux pouces de longueur, tandis que d'autres ont plusieurs pouces de diamètre sur une longueur de plusieurs pieds.

La couleur des basaltes est communément noire; mais il y en a d'un noir d'ébène, d'autres d'un noir bleuâtre, et d'autres plutôt gris que noirs; d'autres verdâtres, d'autres rougeâtres ou d'un jaune d'ocre. Les différents degrés d'altération de la matière ferrugineuse qu'ils contiennent leur donnent ces différentes couleurs; mais en général, lorsqu'ils sont décomposés, leur poudre est d'un gris blanchâtre.

Il y a de grandes masses de basalte en tables ou lits horizontaux. Ces tables sont de différentes épaisseurs: les unes ont plusieurs pieds, et d'autres seule-
ment quelques pouces d'épais; il y en a même d'assez minces pour qu'on puisse s'en servir à couvrir les maisons. C'est des tables les plus épaisses que les Égyptiens, et, après eux, les Romains, ont fait des statues dans lesquelles on remarque particulièrement celles du basalte verdâtre.

Les laves diffèrent des basaltes par plusieurs caractères, et particulièrement en ce qu'elles n'ont pas la forme prismatique; et on doit les distinguer en laves compactes et en laves poreuses. La plupart contiennent des matières étrangères, telles que des quartz, des cristaux de feldspath, de schorl, de mica, ainsi que des zéolites, des granites, des chrysolites, dont quelques unes sont, comme les basaltes, susceptibles de poli. Elles contiennent aussi du grès, du tripoli, des pierres à rasoir, des marbres, et autres matières calcaires.

Le granite qui se trouve dans les laves poreuses a subi quelquefois une si violente action du feu, qu'il se trouve converti en un émail blanc.

Il y a des basaltes et des laves qui sont évidemment changés en terre argileuse, dans laquelle il se trouve quelquefois des chrysolites qui ont perdu leur brillant et leur dureté, et qui commencent elles-mêmes à se convertir en argile.

On trouve de même dans les laves des grenats décolorés et qui commencent à se décomposer, quoi qu'ils aient encore la cassure vitreuse, et qu'ils aient conservé leur forme; d'autres sont très friables et approchent de l'argile blanche.

Les hyacinthes accompagnent souvent les grenats dans ces mêmes laves, et quelquefois on y rencontre
des géodes de calcédoine qui contiennent de l’eau,
et d’autres agates ou calcédoines sans eau, des silex
ou pierres à fusil, et des jaspes de diverses couleurs :
enfin on a rencontré dans les laves d’Expailly, près
du Puy en Velay, des saphirs qui semblent être de
la même nature que les saphirs d’Orient. On trouve
aussi dans les laves du fer cristallisé en octaèdre, du
fer en mine spéculaire, en hématite, etc.

« Il y a des laves poreuses qui sont si légères,
qu’elles se soutiennent sur l’eau; et d’autres qui,
quoique poreuses, sont fort pesantes : la lave plus
légère que l’eau est assez rare. »

Après les basaltes et les laves, se présentent les lai-
tiers des volcans : ce sont des verres ou des espèces
d’émaux qui peuvent être imités par l’art; car, en
tenant les laves à un feu capable de les fondre on en
obtient bientôt un verre noir, luisant, et tranchant
dans sa cassure : on vient même, dit M. Faujas, de
tirer parti en France du basalte, en le convertissant
en verre. L’on a établi, dans les environs de Mont-
pellier, une verrerie où l’on fait avec ce basalte fondu
de très bonnes bouteilles.

Nous avons déjà dit qu’on appelle pierre de galli-
nace, au Pérou, le laitier noir des volcans; ce nom
est tiré de celui de l’oiseau gallinazo, dont le plu-
mage est d’un beau noir : on trouve de ce laitier ou
verre noir non seulement dans les volcans des Cor-
dillières en Amérique, mais en Europe dans ceux de
Lipari, de Volcano, de même qu’au Vésuve et en Is-
lande, où il est en grande abondance.

Le laitier blanc des volcans est bien plus rare que
le noir. M. Faujas en a seulement trouvé quelques
BASALTES, LAVES, ET LAITIERS VOLCANIQUES. 183

morceaux dans le volcan éteint du Couerou en Vivaraïs, et en dernier lieu à Staffa, l’une des îles Hébrides; et d’autres observateurs en ont rencontré dans les matières volcaniques en Allemagne près de Saxenhausen, aussi bien qu’en Islande, et dans les îles Féroé. Ce verre blanc est transparent, et le noir le devient lorsqu’il est réduit à une petite épaisseur; et quand les éléments humides ont agi pendant longtemps sur ces verres, ils s’irisent comme nos verres factices, ce qui les rend chatoyants.

M. de Troil dit qu’indépendamment du verre noir (fausse agate d’Islande), on trouve aussi en Islande des verres blancs et transparents, et d’autres d’un assez beau bleu, qui sont les plus rares de tous. Il ajoute qu’il y en a qui ressemblent, par leur couleur verdâtre et par leur pâte grossière, à notre verre à bouteilles.

Ces laitiers des volcans, et surtout le laitier noir, sont compactes, homogènes, et assez durs pour donner des étincelles avec l’acier ; on peut les tailler et leur donner un beau poli, et l’on en fait d’excellentes pierres de touche en les dégrossissant, sans leur donner le dernier poli.

Lorsque les laves et les basaltes sont réduits en débris et remaniés par le feu du volcan, ils forment, avec les nouvelles laves, des blocs qu’on peut appeler poudingues volcaniques : il y en a de plus ou moins durs; et si les fragments qui composent ces poudingues sont de forme irrégulière, on peut les appeler

1. Cette matière a été indiquée par Pline sous le nom de *lapis lydias.*
des brèches volcaniques. M. Faujas a observé que l'église cathédrale du Puy en Velay a été construite d'une pierre dont le fonds est une brèche volcanique noire dans un ciment jaunâtre.

Les unes de ces brèches volcaniques ont été formées par la seule action du feu sur les anciennes laves; d'autres ont été produites par l'intermède de l'eau, et dans des éruptions que M. Faujas appelle des éruptions boueuses ou aqueuses : elles sont souvent mélangées de plusieurs matières très différentes, de jaspe rouge, de schorl noir, de granite rose et gris, de pierre à fusil, de spath et pierre calcaire, et même de substances végétales réduites en une sorte de charbon.

Toutes ces matières volcaniques, basaltes, laves, et laitiers, étant en grande partie d'une essence vitreuse, se décomposent par l'impression des éléments humides, et même par la seule action de l'acide aérien. Les matières autrefois volcaniques, maintenant argileuses, dit M. Ferber, molles comme de la cire, ou endurcies et pierreuses, sont blanches pour la plupart; mais on en trouve aussi de rouges, de grises-cendrées, de bleuâtres, et de noires : on rencontre des laves argileuses dans presque tous les volcans agissants et éteints, et cette altération des laves peut s'opérer de plusieurs manières. Il y a de ces laves, altérées par l'acide sulfureux du feu des volcans, qui sont presque aussi rouges que le minium; il y en a d'autres d'un rouge pâle, d'un rouge pourpre, de jaunes, de brunes, de grises, de verdâtres, etc.

M. Faujas divise les produits volcaniques altérés :

En laves compactes ou poreuses qui ont perdu sim-
plement leur dureté en conservant leurs parties constituant, à l'exception du phlogistique du fer qui a disparu ;

Et en laves amollies et décolorées par les acides, qui ont formé, en se combinant avec les diverses matières qui constituent ces mêmes laves, différents produits salins ou minéraux dont l'origine nous seroit inconnue si nous n'avions pas la facilité de suivre la nature dans cette opération.

Il en décrit plusieurs variétés de l'une et de l'autre sorte : il présente, dans la première de ces deux divisions, des basaltes et des laves qui, ayant conservé leur forme, leur nature, et leur dureté sur une de leurs faces, sont entièrement décomposés sur l'autre, et convertis en une substance terreuse, molle, au point de se laisser aisément entamer, et l'on peut suivre cette décomposition jusqu'à l'entièr e conversion du basalte en terre argileuse.

Il y a des basaltes devenus argileux qui sont d'un gris plus ou moins foncé; d'autres d'une teinte jaunâtre, et comme rouillés; d'autres dont la surface est convertie en argile blanche, grise, jaunâtre, violette, rouge. Plusieurs de ces basaltes décomposés contiennent des prismes de schorl qui ne sont point altérés; ce qui prouve que les schorls résistent bien plus que les basaltes les plus durs aux causes qui produisent leur décomposition.

Ce savant naturaliste a aussi reconnu des laves décomposées en une argile verte, savonneuse, et qui exhaloit une forte odeur terreuse; et enfin il a vu de ces laves qui renfermoient de la chrysolite et du schorl qui n'étoit pas décomposé, tandis que la chrysolite
était, comme la lave, réduite en argile, ce qui semble prouver que le quartz résiste moins que le schorl à la décomposition.

Dans la seconde division, c'est-à-dire dans les laves amollies et décolorées par les acides, qui ont formé différents produits salins ou minéraux, M. Faujas présente aussi plusieurs variétés dans lesquelles il se trouve du sel alumineux, lorsque l'acide vitriolique s'unit à la terre argileuse; ce même acide produit le gypse avec la terre calcaire, le vitriol vert avec la chaux de fer, et le soufre avec la matière du feu.

Les variétés de cette sorte, citées par M. Faujas, sont :

1° Un basalte d'un rouge violet, ayant la cassure de la pierre calcaire la plus dure, quoique ce basalte soit une véritable lave et d'une nature très différente de toute matière calcaire;

2° Une lave d'un blanc nuancé de rouge;

3° Une lave dont une partie est changée en une pierre blanche tendre, tandis que l'autre partie, qui est dure et d'un rouge foncé, a conservé toute sa chaux ferruginueuse changeée en colcotar;

4° Une lave décomposée, comme la précédente, avec une enveloppe de gypse blanc et demi-tranparent;

5° Une lave poreuse d'un blanc jaunâtre avec des grains de sélénite. La terre argileuse qui forme cette lave se trouve convertie en véritable alun natif; l'acide vitriolique uni à la terre argileuse produit, comme nous venons de le dire, le sel alumineux et le véritable alun natif; lorsqu'il s'unit à la base du fer, il forme le vitriol vert : en s'émisssant donc dans de certaines
circonstances à la terre ferrugineuse des laves, il pourra produire ce vitriol, pourvu qu'il soit affoibli par les vapeurs aqueuses; et cette combinaison est assez rare, et ne se trouve que dans les lieux où il y a des sources bouillantes. On en voit sur les parois de la grotte de l'île de Volcano, où il y a une mare d'eau bouillante, sulfureuse et salée.

On trouve aussi du sel marin en grumeaux adhérents à de la lave altérée ou à du sable vomi par les volcans : ce sel marin ne se présente pas sous forme cubique, parce qu'il n'a pas eu le temps de se cristalliser dans l'eau marine rejetée par les volcans. Il se trouve de même de l'alcali fixe blanc dans les cavités de quelques laves nouvelles; et comme on trouve encore du sel ammoniac dans les volcans, cela prouve que l'alcali volatil s'y trouve aussi, sans parler du soufre, qui, comme l'on sait, est le premier des produits volcaniques, et qui n'est que la matière du feu saisie par l'acide vitriolique.

Quelquefois le soufre s'unit dans les volcans à la matière arsenicale, et alors de jaune il devient d'un rouge vif et brillant : mais, comme nous l'avons dit, le soufre se produit aussi par la voie humide; on en a plusieurs preuves, et les beaux cristaux qu'on a trouvés dans la soufrière de Conilla, à quatre lieues de Cadix, et qui étoient renfermés dans des géodes de sphaïre calcaire, ne laissent aucun doute à ce sujet. Il en existe d'ailleurs de pareils dans divers autres lieux, tantôt unis à la sélénite gypseuse, tantôt à l'argile, ou renfermés dans des cailloux; nous savons même qu'on

a trouvé, il y a six ou sept ans, du soufre bien cristallisé et formé par la voie humide dans l’ancien égout du faubourg Saint-Antoine : ces cristaux de soufre étoient adhérents à des matières végétales et animales, telles que des cordages et des cuirs.

PIERRE DE TOUCHE.

La pierre de touche, sur laquelle on frotte les métaux pour les reconnaître à la couleur de la trace qu’ils laissent à sa surface, est un basalte plus dur que l’or, l’argent, le cuivre, et dont la superficie, quoique lisse en apparence, est néanmoins hérissée et assez rude pour les entamer et retenir les particules métalliques que le frottement a détachées. Le quartz et le jaspe, quoique plus durs que ce basalte, et par conséquent beaucoup plus durs que ces métaux, ne nous offrent pas le même effet, parce que la surface de ces verres primitifs, étant plus lisse que celle du basalte, laisse glisser le métal sans l’entamer et sans en recevoir la trace. Les acides peuvent enlever cette impression métallique, parce que le basalte ou pierre de touche sur lesquels on frotte le métal sont d’une substance vitreuse qui résiste à l’action des acides, auxquels les métaux ne résistent pas.

Il paraît que le basalte dont on se sert comme pierre de touche est la pierre de Lydie des anciens : les Égyptiens et les autres peuples du Levant connoissoient assez ces basaltes pour les employer à plusieurs ouvra-
PIERRE DE TOUCHE.

189

ges, et l'on trouve encore aujourd'hui des figures et des morceaux de ce basalte, pierre de Lydie, dont la texture est feuilletée et la couleur brune ou noire. Au reste, il ne faut pas confondre ce basalte, vraie pierre de touche, avec la pierre décrite par M. Pott, à laquelle il donne ce même nom; car cette pierre de M. Pott n'est pas un basalte, mais un schiste dur, mélangé d'un sable fin de grès : seulement on doit dire qu'il y a plus d'une sorte de pierre dont on se sert pour toucher les métaux; et en effet, il suffit, pour l'usage qu'on en fait, que ces pierres soient plus dures que le métal, et que leur surface ne soit pas assez polie pour le laisser glisser sans l'entamer.

PIERRE VARIOLITÉ.

Ces pierres sont ainsi dénommées parce qu'elles présentent à leur surface de petits tubercules assez semblables aux grains et pustules de la petite-vérole. On trouve de ces pierres en grande quantité dans la Durance; elles viennent des montagnes au dessus de la vallée de Servières, à deux lieues de Briançon, d'où elles sont entraînées par les eaux en morceaux plus ou moins gros; elles se trouvent aussi en masses assez considérables dans cette même vallée. M. le docteur Demeste dit que ces pierres variolites de la Durance sont des galets ou masses roulées d'un basalte grisâtre ou d'un vert brun, lequel est souvent entremêlé de quelques veines quartzzeuses, et parsemé de petites
éminences formées par des globules verdâtres, qui sont aussi du basalte, mais beaucoup plus dur que la gangue grisâtre, puisque ces globules, moins usés que le reste, en roulant forment les éminences superficielles qui ont fait donner à cette pierre le nom de variolite. Ces petites éminences, dont le centre offre d'ordinaire un point rouge, imitent en effet assez bien les pustules de la petite-vérole.

Nous devons observer ici que cet habile chimiste suivait la nomenclature des Allemands et des Suédois, qui donnaient alors le nom de basalte au schorl, par la seule raison qu'il étoit souvent configuré en prisme comme le véritable basalte : mais les naturalistes ont rejeté cette dénomination équivoque, depuis qu'ils ont reconnu, avec M. Faujas de Saint-Fond, que le nom de basalte ne devoit être donné spécifiquement et exclusivement qu'aux laves prismatiques, connues sous le nom de basaltes, tels que ceux de Stolpen en Misnie, d'Antrim en Irlande, ceux du Vivarais, du Velay, de l'Auvergne, etc.

Pour éclaircir cette nomenclature, M. Faujas de Saint-Fond a observé que Wallerius, qui a nommé cette pierre lapis variolarum ou variolites, l'avait mise au nombre des basaltes, sans spécifier si c'étoit un basalte volcanique, et que, sans autre examen, cette dénomination équivoque a été adoptée par Linnaeus, par M. le baron de Born, et par plusieurs de nos naturalistes français. M. Faujas de Saint-Fond a donc pensé qu'il fallait désigner cette pierre par des caractères plus précis, et il l'a dénommée lapis variolites viridis verus, afin de la distinguer de plusieurs autres pierres couvertes également de taches et relevées de
tubercules, et qui cependant sont très différentes de celle-ci.

Les Romains ont connu la véritable pierre variolite. "J'en ai vu une très belle, dit M. Faujas de Saint-Fond, entourée d'un cercle d'or, qui fut trouvée en Dauphiné, dans un tombeau antique, entre Suse et Saint-Paul-Trois-Châteaux; elle avait été regardée probablement comme une espèce d'amulette propre à garantir de la maladie avec laquelle elle a une sorte de ressemblance. Quelques peuplades des Indes occidentales, ayant la même croyance, portent cette pierre suspendue à leur cou; ils la nomment "gamaïcou.""

Cette pierre est particulièrement connue en Europe sous le nom de "variolite de la Durance", parce qu'elle est abondante dans cette rivière; les torrents la détachent des hautes Alpes dauphinoises, dans une étroite et profonde vallée, entre Servières et Briançon.

La vraie variolite est d'un vert plus ou moins foncé; sa pâte est fine, dure, et susceptible de recevoir un beau poli; quoiqu'un peu gras, particulièrement sur les taches.

Les plus gros boutons et protubérances de la variolite n'excèdent pas six à sept lignes de diamètre, et les plus petites ne sont que d'une demi-ligne.

L'on a reconnu dans la variolite quelques points et des linéaments de pyrite et même d'argent natif, mais en très petite quantité. L'analyse de cette pierre, faite avec beaucoup de soin par M. Faujas de Saint-Fond, tend à prouver qu'elle est composée de quartz, d'argile, de magnésie, de terre calcaire, et d'un peu
de fer qui a produit sa couleur verte, et que les ta-
ches qui forment ces protubérances singulières sur les
variolites roulées sont dues à des globules de schorl
plus dures que la pierre même qui les renferme.

Cette pierre composée de tous ces éléments est
beaucoup moins commune que les autres pierres,
puisqu'on ne l'a jusqu'à présent trouvée que dans
quelques endroits de la vallée de Servières en Dauphiné,
dans un seul autre endroit en Suisse, et en
dernier lieu dans l'île de Corse. Don Ulloa et M. Val-
mont de Bomare disent qu'elle se trouve aussi en Amé-
rique; mais nous n'en avons reçu aucun échantillon
par nos correspondants.

TRIPOLI.

Le tripoli est une terre brûlée par le feu des vol-
cans, et cette terre est une argile très fine, mêlée de
particules de grès tout aussi fines, ce qui lui donne
la propriété de mordre assez sur les métaux pour les
polir. Cette terre est très sèche, et se présente en
masses plus ou moins compactes, mais toujours fria-
bles et s'égrenant aussi facilement que le grès le plus
tendre. Sa couleur jaune ou rougeâtre, ou brune et
noirâtre, démontre qu'elle est teinte et peut-être
mêlée de fer. Cette terre, déjà cuite par les feux
souterrains, se recuit encore lorsqu'on lui fait subir
l'action du feu; car elle y prend, comme toutes les
autres argiles, plus de couleur et de dureté, s'émail-
lant de même à la surface, et se vitrifiant à un feu très violent.

Cette terre a tiré son nom de Tripoli en Barbarie, d'où elle nous étoit envoyée avant qu'on en eût découvert en Europe : mais il s'en est trouvé en Allemagne et en France. M. Gardeil nous a donné la description de la carrière de tripoli qui se trouve en Bretagne, à Poligny près de Rennes ; mais cet observateur s'est trompé sur la nature de cette terre, qu'il a cru devoir attribuer à la décomposition des végétaux. D'autres observateurs, et en particulier MM. Guettard, Fougeroux de Bondaroy, et Faujas de Saint-Fond, ont relevé cette erreur, et ont démontré que les végétaux n'ont aucune part à la formation du tripoli. Ils ont observé avec soin les carrières de tripoli à Menat en Auvergne. M. de Saint-Fond en a aussi reconnu des morceaux parmi les cailloux roulés par le Rhône, près de Montélimart, dont les plus gros sont des masses de basalte entraînées, comme les morceaux de tripoli, par le mouvement des eaux.

Par cet exposé, et d'après les faits observés par MM. Faujas de Saint-Fond et Fougeroux de Bondaroy, on ne peut guère douter que le tripoli ne doive son origine à la décomposition des pierres quartzzeuses ou roches vitreuses, mêlées de fer, par l'action des éléments humides qui les auront divisées sans ôter à ces particules vitreuses leur entière dureté.
PIERRE PONCE.

M. Daubenton a remarqué et reconnu le premier que les pierres ponces étoient composées de filets d'un verre presque parfait, et M. le chevalier de Dolo-omieu a fait de très bonnes observations sur l'origine et la nature de cette production volcanique : il a observé dans ses voyages que l'île de Lipari est l'immense magasin qui fournit les pierres ponces à toute l'Europe ; que plusieurs montagnes de cette île en sont entièrement composées. Il dit qu'on les trouve en morceaux isolés dans une poudre blanche, farineuse, et qui n'est elle-même qu'une ponce pulvéru-

lente.

La substance de ces pierres, surtout des plus légè-

res, est dans un état de fritte très rapproché d'un verre parfait : leur tissu est fibreux, leur grain rude et sec ; elles paroissent luisantes et soyeuses, et elles sont beaucoup plus légères que les laves poreuses ou cellulaires.

Cet illustre observateur distingue quatre espèces de ponces qui diffèrent entre elles par le grain plus ou moins serré, par la pesanteur, par la contexture, et par la disposition des pores.

« Les pierres ponces, dit-il, paroissent avoir coulé à la manière des lavés, avoir formé, comme elles, de grands courants que l'on retrouve, à différentes pro-

fondeurs, les uns au dessus des autres, autour du
groupe des montagnes du centre de Lipari.... Les pierres ponces pesantes occupent la partie inférieure des courants ou massifs, les pierres légères sont au dessus, et il en est de même des laves, dont les plus poreuses et les plus légères occupent toujours la partie supérieure. »

Il observe que les îles de Lipari et de Volcano sont les seuls volcans de l'Europe qui produisent en grande quantité des pierres ponces; que l'Etna n'en donne point, et le Vésuve très peu; qu'on n'en trouve pas dans les volcans éteints de la Sicile, de l'Italie, de la France, de l'Espagne, et du Portugal : cependant M. Faujas de Saint-Fond en a reconnu de bien caractérisées en Auvergne, sur la montagne de Polognac, à trois lieues de Clermont, route de Rochefort.

En examinant avec soin les différentes sortes de pierres ponces, M. le chevalier de Dolomieu a observé que les plus pesantes avoient le grain, les écailles luisantes, et l'apparence fissile, du schiste micacé blanchâtre... Il a trouvé dans quelques unes des restes de granite qui en présentoient encore les trois parties constituantes, le quartz, le feld-spath, et le mica. On sait d'ailleurs que le granite se fond en une espèce d'émail blanc et boursouflé. « J'ai vu, dit-il, ces granites acquérir par degrés le tissu lâche et fibreux et la consistance de la ponce; je ne puis donc douter que la roche feuilletée, granitique et micacée, et le granite lui-même, ne soient les matières premières à l'altération desquelles on doit attribuer la formation des pierres ponces. » Et il ajoute, avec raison, que la rareté des pierres ponces vient de ce qu'il y a très peu de volcans qui soient situés dans les granites;
qu’ils se trouvent presque toujours dans les schistes et les ardoises, matières qui, travaillées par le feu et beaucoup moins dénaturées qu’on ne le suppose, servent de base aux laves ferrugineuses noires et rouges que l’on rencontre dans tous les volcans. M. de Dolomieu observe, 1° que, pour qu’il y ait production de pierres ponces, il faut que le granite soit d’une nature très fusible, c’est-à-dire mêlé de beaucoup de feld-spat, et que le feu du volcan soit plus vif et plus actif qu’il ne l’est communément. On reconnaît, dit-il, que la fusion a toujours commencé par le feld-spat, et que le premier effet du feu sur le quartz a été de le gercer et de le rendre presque pulvérulent; 2° que cette production peut s’opérer dans les roches granitiques, qui renferment entre leurs bandes des roches feuilletées, micacées, noires et blanches, et des granites fissiles ou gneis, dont la base est un feld-spat très fusible, tel qu’il l’a observé dans les granites qui sont en face de Lipari, et qui s’étendent jusqu’à Melazzo.

Au reste, les pierres ponces les plus légères et de la meilleure qualité sont si abondantes à l’île de Lipari, que plusieurs navires viennent chaque année en faire leur approvisionnement pour les transporter dans différentes parties de l’Europe.

M. Faujas de Saint-Fond, ayant examiné les différentes sortes de pierres ponces qui lui ont été données par M. le chevalier de Dolomieu, fait mention de plusieurs variétés de ces pierres, dont les unes sont compactes et granitoides, et indiquent le premier passage du granite à la pierre ponce; d’autres qui, quoique compactes, sont composées de filets vi-
treux, et tiennent plus de la nature de la pierre ponce que du granite ; d'autres légères, blanches et porce-
nes, avec des stries soyeuses, et ce sont les pierres ponces parfaites qui se soutiennent et nagent sur
l'eau ; leur grain est sec, fin, et rude, et elles servent, dans les arts, à dégrossir, et même à polir plusieurs
ouvrages. Tous les filets vitreux de ces pierres sont très fragiles, et n'ont aucune forme régulière ; il y en
a de cylindriques, de comprimés, de tortueux, de gros à la base, et capillaires à l'extrémité. On trouve
assez souvent dans ces pierres des vides occasionnés par des soufflures, et c'est dans ces cavités que l'on
voit des filets déliés et si fins qu'ils ressemblent à de la soie. D'autres enfin sont très légères, farineuses, et
friables ; celles-ci sont si tendres et ont si peu de con-
sistance, qu'elles ne sont d'aucun usage dans les arts ;
cette sorte de ponce a été surcalcinée, et s'est réduite
en poudre. On a donné mal à propos à cette poudre
le nom de cendre, dont elle n'a que la couleur et les
apparences extérieures. On la trouve en très grande
abondance à l'île de Lipari, à celle de Volcano, et
dans différents autres lieux.

M. Faujas de Saint-Fond présume, avec fondu-
ment, que toutes les fois que le granite contiendra
du feldspath en grande quantité, l'action du feu
pourra le convertir en pierre ponce, et qu'il en sera
de même de toutes les pierres et terres où la matière
quartzeuse se trouvera mêlée de feldspath en assez
grande quantité pour la rendre très fusible. On peut
même croire que le basalte remanié par le feu formera
de la pierre ponce noire ou noirâtre, et que les grès
et schistes mêlés de matières calcaires qui les rendent
fusibles pourront aussi se convertir en pierres ponces de diverses couleurs.

POUZZOLANE.

PERSONNE n’a fait autant de recherches que M. Faujas de Saint-Fond sur les pouzzolanes. On ne connaissait avant lui ou du moins on ne faisait usage que de celles d’Italie, et il a trouvé dans les anciens volcan des pouzzolanes de la même nature, et qui ont à peu près les mêmes qualités que celles de l’Italie : on doit même présumer qu’on en trouvera de semblables aux environs de la plupart des volcans agissants ou éteints ; car ce n’est pas seulement à Pouzzol, d’où lui vient son nom, qu’il y a de la pouzzolane, puisqu’il s’en trouve dans presque tous les terrains volcanisés de Sicile, de Naples, et de la campagne de Rome. Ce produit des feux souterrains peut se trouver dans toutes les régions où les volcans agissent ou ont agi ; car on connaît assez anciennement les pouzzolanes de l’Amérique méridionale : celles de la Guadeloupe et de la Martinique ont été reconnues en 1696. Mais c’est à M. Ozi, de Clermont-Ferrand, et ensuite à MM. Guettard, Desmarets, et Pasumot, qu’on doit la connaissance de celles qui se trouvent en Auvergne ; et enfin à M. Faujas de Saint-Fond la découverte et l’usage de celles du Velay et du Vivarais, découverte d’autant plus intéressante que ces pouzzolanes du Vivarais, pouvant être conduites par
le Rhône jusqu'à la mer, pourront, sinon remplacer, du moins suppléer à celles que l'on tire d'Italie, pour toutes les constructions maritimes et autres qu'on veut défendre contre l'action des éléments humides.

Les pouzzolanes ne sont cependant pas absolument les mêmes dans tous les lieux ; elles varient, tant pour la qualité que par la couleur : il s'en trouve de la rouge et de la grise en Vivarais, et celle-ci fait un mortier plus dur et plus durable que celui de la première.

Toutes les pouzzolanes proviennent également de la première décomposition des laves et basaltes, qui, comme nous l'avons dit, se réduisent ultérieurement en terre argileuse, ainsi que toutes les autres matières vitreuses, par la longue impression des éléments humides ; mais, avant d'arriver à ce dernier degré de décomposition, les basaltes et les laves, qui toujours contiennent une assez grande quantité de fer pour être très attirables à l'aimant, se brisent en poudre vitreuse mêlée de particules ferrugineuses, et la pouzzolane n’est autre chose que cette poudre : elle est d’autant meilleure pour faire des ciments que le fer y est en plus grande quantité, et que les parties vitreuses sont plus éloignées de l’état argileux.

Ainsi la pouzzolane n’est qu’une espèce de verre ferrugineux réduit en poudre. Il est très possible de composer une matière de même nature, en broyant et pulvérisant les crasses qui s’écoulent du foyer des aînieres où l’on traite le fer. J’ai souvent employé ce ciment ferrugineux avec succès, et je le crois équivalent à la meilleure pouzzolane : mais il est vrai qu’il seroit difficile de s’en procurer une quantité suffisante.
pour faire de grandes constructions. Les Hollandais composent une sorte de pouzzolane qu’ils nomment *tras*, en broyant des laves de volcan sous les pilons d’un bocard : la poudre qui en provient est tamisée au moyen d’un crible qui est mis en mouvement par l’élévation des pilons, et le *tras* tombe dans de grandes caisses pratiquées au dessous de l’entablement des pilons ; ils s’en servent avec succès dans leurs constructions maritimes.
GÉNÉSIE DES MINÉRAUX.

Je crois devoir donner en récapitulation l'ordre successif de la génésie ou filiation desmatières minérales, afin de retracer en abrégé la marche de la nature, et d'expliquer les rapports généraux dont je présenterai le tableau et l'arrangement méthodique, d'après lequel on pourra dorénavant classer tous les produits de la nature en ce genre, en les rapportant à leur véritable origine.

Le globe terrestre ayant été liquéfié par le feu, les matières fixes de cette masse immense se sont toutes fondues et vitrifiées, tandis que les substances volatiles se sont élevées en vapeurs autour de ce globe, à plus ou moins de hauteur, suivant le degré de leur pesanteur et de leur volatilité. Ces premières matières fixes qui ont subi la vitrification nous sont représentées par les verres que j'ai nommés primitifs, parce que toutes les autres matières vitreuses sont réellement composées du mélange ou des détrits de ces mêmes verres.

Le quartz est le premier et le plus simple de ces verres de nature; le jaspe est le second, et ne diffère du quartz qu'en ce qu'il est fortement imprégné de vapeurs métalliques qui l'ont rendu entièrement opaque, tandis que le quartz est à demi transparent: ils sont tous deux très réfractaires au feu. Le troisième
verre primitif est le feld-spath, et le quatrième est le schorl, qui tous deux sont fusibles. Enfin le cinquième est le mica, qui tient le milieu entre les deux verres réfractaires et les deux verres fusibles. Le mica provient de l’exfoliation des uns et des autres ; il participe de leurs différentes qualités. On pourrait donc, en rigueur, réduire les cinq verres primitifs à trois, c’est-à-dire au quartz, au feld-spath, et au schorl, puisque le jaspe n’est qu’un quartz imprégné de vapeurs métalliques, et que les micas ne sont que des paillettes et des exfoliations des autres verres ; mais nous n’avons pas jugé cette réduction nécessaire, parce qu’elle n’a rapport qu’à la première formation de ces verres, dont nous ignorons les différences primitives, c’est-à-dire les causes qui les ont rendus plus ou moins fusibles ou réfractaires : cette différence nous indique seulement que la substance du quartz et du jaspe est plus simple que celle du feld-spath et du schorl, parce que nous savons par expérience que les matières les plus simples sont les plus difficiles à vitrifier, et qu’au contraire celles qui sont composées sont assez aisément fusibles.

Les premiers mélanges de ces verres de nature se sont faits après la fusion et dans le temps de l’incandescence, par la continuité de l’action du feu ; et les matières qui ont résulté de ces mélanges nous sont représentées par les roches vitreuses de deux ou plusieurs substances, telles que les porphyres, ophites, et granites, à la formation desquelles l’eau n’a point eu de part.

La chaleur excessive du globe vitrifié ayant diminué peu à peu par la déperdition qui s’en est faite,
jusqu’au temps où sa surface s’est trouvée assez attié-
die pour recevoir les eaux et les autres substances volatiles; sans les rejeter en vapeurs, alors les matiè-
res métalliques, sublimées par la violence du feu, et toutes les autres substances volatiles, ainsi que les eaux reléguées dans l’atmosphère, sont tombées suc-
cessivement et se sont établies à jamais sur la surface et dans les fentes ou cavités de ce globe.

Le fer, qui de tous les métaux exige le plus grand degré de chaleur pour se fondre, s’est établi le pre-
mier, et s’est mêlé à la roche vitreuse lorsqu’elle étoit encore en état de demi-fusion. Le cuivre, l’argent, et l’or, auxquels un moindre degré de feu suffit pour se liquéfier, se sont établis ensuite sous leur forme métallique dans les fentes du quartz et des autres ma-
tières vitreuses déjà consolidées; l’étain et le plomb, ainsi que les demi-métaux et autres matières métalli-
ques, ne pouvant supporter un feu violent sans se cal-
ciner, ont pris partout la forme de chaux, et se sont ensuite convertis, par l’intermède du feu, en mine-
rais pyriteux.

A mesure que le globe s’attiédissoit le chaos se dé-
brouilloit, l’atmosphère s’épuroit; et après la chute entière des matières sublimées métalliques ou terreu-
es, et des eaux jusqu’alors réduites en vapeurs, l’air est demeuré pur, sous la forme d’un élément distinct et séparé de la terre et de l’eau par sa légèreté.

L’air a retenu dès ce temps et retient encore une certaine quantité de feu qui nous est représentée par cette matière à laquelle on donne aujourd’hui le nom d’air inflammable, et qui n’est que du feu fixé dans la substance de l’air.
Cet air imprégné de feu, se mêlant avec l'eau, a formé l'acide aérien, dont l'action s'exerçant sur les matières vitreuses, a produit l'acide vitriolique, et ensuite les acides marin et nitreux, après la naissance des coquillages et des autres corps organisés marins ou terrestres.

Les eaux, élevées d'abord à plus de quinze cents toises au dessus du niveau de nos mers actuelles, couvrirent le globe entier, à l'exception des plus hautes montagnes. Les premiers végétaux et animaux terrestres ont habité ces hauteurs, tandis que les coquillages, les madrépores, et les végétaux maniés, se forment au sein des eaux.

La multiplication des uns et des autres étoit aussi prompte que nombreuse, sur une terre et dans des eaux dont la grande chaleur mettoit en activité tous les principes de la fécondation.

Il s'est produit dans ce temps des myriades de coquillages qui ont absorbé dans leur substance coquilleuse une immense quantité d'eau, et dont les détritus ont ensuite formé nos montagnes calcaires; tandis qu'en même temps les arbres et autres végétaux qui couvrirent les terres élevées produisent la terre végétale par leur décomposition, et étoient ensuite entraînés avec les pyrites et autres matières combustibles, par le mouvement des eaux, dans les cavités du globe, où elles servent d'aliment aux feux souterrains.

A mesure que les eaux s'abaissaient, tant par l'absorption des substances coquilleuses que par l'affaissement des cavernes et des boursouflures des premières couches du globe, les végétaux s'étendoient par
de grandes accrues sur toutes les terres que les eaux laissoient à découvert par leur retraite; et leurs débris accumulés combloient les premiers magasins des matières combustibles, ou en formoient de nouveaux dans les profondeurs du globe, qui ne seront épuisés que quand le feu des volcans en aura consommé toutes les matières susceptibles de combustion.

Les eaux, en tombant de l'atmosphère sur la surface du globe en incandescence, furent d'abord rejetées en vapeurs, et ne purent s'y établir que lorsqu'il fut attiédi; elles firent dès ces premiers temps de fortes impressions sur les matières vitrifiées qui composoient la masse entière du globe; elles produisirent des fentes et sèlures dans le quartz; elles le divisèrent, ainsi que les autres matières vitreuses, en fragments plus ou moins gros, en paillettes, et en poudre, qui par leur agrégation formèrent ensuite les grès, les talcs, les serpentines, et autres matières dans lesquelles on reconnoît encore la substance des verres primitifs plus ou moins altérée. Ensuite, par une action plus longue, les éléments humides ont converti toutes ces poudres vitreuses en argiles et en glaises, qui ne différaient des grès et des premiers débris des verres primitifs que par l'atténuation de leurs parties constitutantes, devenues plus molies et plus ductiles par l'action constante de l'eau qui a pour ainsi dire pourri ces poudres vitreuses et les a réduites en terre.

Enfin ces argiles, formées par l'intermède et par la longue et constante impression des éléments humides, se sont ensuite peu à peu desséchées, et, ayant pris plus de solidité par leur desséchement, elles ont perdu leur première forme d'argile avec leur mollesse,
et elles ont formé les schistes et les ardoises, qui, quoique de même essence, diffèrent néanmoins des argiles par leur dureté, leur sécheresse, et leur solidité.

Ce sont là les premiers et grands produits des détriments et de la décomposition par l'eau de toutes les matières vitreuses formées par le feu primitif; et ces grands produits ont précédé tous les produits secondaires, qui sont de la même essence vitreuse, mais qu'on ne doit regarder que comme des extraits ou stalactites de ces matières primordiales.

L'eau a de même agi, et peut-être avec plus d'avantage, sur les substances calcaires, qui toutes proviennent du détriment et des dépouilles des animaux à coquilles; elle est d'abord entrée en grande quantité dans la substance coquilleuse, comme on peut le démontrer par la grande quantité d'eau que l'on tire de cette substance coquilleuse et de toute matière calcaire, en leur faisant subir l'action du feu. L'eau, après avoir passé par le filtre des animaux à coquilles, et contribué à la formation de leur enveloppe pierreuse, en est devenue partie constitante, et s'est incorporée avec cette matière coquilleuse au point d'y résider à jamais. Toute matière coquilleuse ou calcaire est réellement composée de plus d'un quart d'eau, sans y comprendre l'air fixe qui s'est incarcéré dans leur substance en même temps que l'eau.

Les eaux rassemblées dans les vastes bassins qui leur servoient de réceptacle, et couvrant dans les premiers temps toutes les parties du globe, à l'exception des montagnes élevées, ont dès lors éprouvé le mouvement du flux et reflux, et tous les autres mou-
vements qui les agitoient par les vents et les orages; et dès lors elles ont transporté, brisé, et accumulé les dépouilles et débris des coquillages et de toutes les productions pierreuses des animaux marins, dont les enveloppes sont de la même nature que la substance des coquilles; elles ont déposé tous ces détritus plus ou moins brisés et réduits en poudre sur les argiles, les glaises, et les schistes, par lits horizontaux, ou inclinés comme l’étoit le sol sur lequel ils tombaient en forme de sédiment. Ce sont ces mêmes sédiments de coquilles et autres substances de même nature, réduites en poudre et en débris, qui ont formé les craies, les pierres calcaires, les marbres, et même les plâtres, lesquels ne diffèrent des autres matières calcaires qu’en ce qu’ils ont été fortement imprégnés de l’acide vitriolique contenu dans les argiles et les glaises.

Toutes ces grandes masses de matières calcaires et argileuses une fois établies et solidifiées par le dessèchement, après l’abaissement ou la retraite des eaux, se sont trouvées exposées à l’action de l’air et à toutes les impressions de l’atmosphère et de l’acide aérien qu’il contient: ce premier acide a exercé son action sur toutes les substances vitreuses, calcaires, métalliques, et limoneuses.

Les eaux pluviales ont d’abord pénétré la surface des terrains découverts; elles ont coulé par les fentes perpendiculaires ou inclinées, au bas desquelles les lits d’argile les ont reçues et retenues pour les laisser ensuite paraître en forme de sources, de fontaines, qui toutes doivent leur origine et leur entretien aux
vapeurs aqueuses transportées par les vents de la surface des mers sur celle des continents terrestres.

Ces eaux pluviales, et même leurs vapeurs humides, agissant sur la surface ou pénétrant la substance des matières vitreuses et calcaires, en ont détaché des particules pierreuses dont elles se sont chargées et qui ont formé de nouveaux corps pierreux. Ces molécules détachées par l’eau se sont réunies, et leur agrégation a produit des stalactites transparentes et opaques, selon que ces mêmes particules pierreuses étoient réduites à une plus ou moins grande ténuité, et qu’elles ont pu se rassembler de plus près par leur homogénéité.

C’est ainsi que le quartz, pénétré et dissous par l’eau, a produit, par exsudation, les cristaux de roche blancs et les cristaux colorés, tels que les améthystes, cristaux-topazes, chrysolithes, et aigues-marines, lorsqu’il s’est trouvé des matières métalliques, et particulièrement du fer, dans le voisinage ou dans la route de l’eau chargée de ces molécules quartzeuses.

C’est ainsi que le feld-spath seul, ou le feld-spath mêlé de quartz, a produit tous les cristaux chatoyants, tels que le saphir d’eau, la pierre de Labrador ou de Russie, les yeux-de-chat, l’œil de poisson, l’œil-de-loup, l’aventurine et l’opale, qui nous démontrent, par leur chatoiement et par leur fusibilité, qu’ils tirent leur origine et une partie de leur essence de feld-spath pur ou mélangé de quartz.

C’est par les mêmes opérations de nature que le schorl seul, ou le schorl mêlé de quartz, a produit les émeraudes, les topazes-rubis-saphirs du Brésil, la
topaze de Saxe, le béril, les péridots, les grenats, les hyacinthès et la tourmaline, qui nous démontrent, par leur pesanteur spécifique et par leur fusibilité, qu’ils ne tirent pas leur origine du quartz ni du feldspath seuls, mais du schorl, ou schorl mêlé de l’un ou de l’autre.

Toutes ces stalactites vitreuses, formées par l’agrégation des particules homogènes de ces trois verres primitifs, sont transparents ; leur substance est entièrement vitreuse, et néanmoins elle est disposée par couches alternatives de différente densité, qui nous sont démontrées par la double réfraction que souffre la lumière en traversant ces pierres. Seulement il est à remarquer que dans toutes, comme dans le cristal de roche, il y a un sens où la lumière ne se partage pas, au lieu que dans les sphaïrs et cristaux calcaires, tels que celui d’Islande, la lumière se partage, dans quelque sens que ces matières transparentes lui soient présentées.

Le quartz, le feld-spath et le schorl, seuls ou mêlés ensemble, ont produit d’autres stalactites moins pures et à demi transparentes, toutes les fois que leurs particules ont été moins dissoutes, moins atténuées par l’eau, et qu’elles n’ont pu se cristalliser par défaut d’homogénéité ou de ténuité. Ces stalactites demi-transparentes sont les agates, coralinès, sardoines, prases et onyx, qui toutes participent beaucoup plus de l’essence du quartz que de celle du feld-spath et du schorl ; il y en a même plusieurs d’entre elles qu’on ne doit rapporter qu’à la décomposition du quartz seul, le feld-spath n’étant point entré dans celles qui n’ont aucun chatoiement, et le schorl ne s’étant mêlé que
dans celles dont la pesanteur spécifique est considérablement plus grande que celle du quartz ou du feldspath. D'ailleurs celles de ces pierres qui sont très réfractaires au feu sont purement quartzzeuses; car elles seraient fusibles si le feldspath ou le schorl étoient entrés dans la composition de leur substance.

Le jaspe primitif, étant opaque par sa nature, n'a produit que des stalactites opaques qui nous sont représentées par tous les jaspes de seconde formation: les uns et les autres n'étant que des quartz ou des extraits du quartz imprégnés de vapeurs métalliques sont également réfractaires au feu; et d'ailleurs leur pesanteur spécifique, qui n'est pas fort différente de celle du quartz, démontre qu'ils ne contiennent point de schorl; et leur poli sans chatoiement démontre aussi qu'il n'est point entré de feldspath dans leur composition.

Enfin le mica, qui n'a été produit que par les pou-dres et les exfoliations des quatre autres verres primitifs, a communément une transparence ou demi-transparence, selon qu'il est plus ou moins atténué. Ce dernier verre de nature a formé, de même que les premiers, par l'intermède de l'eau, des stalactites demi-transparentes, telles que les talcs, la craie de Briançon, les amiantes, et d'autres stalactites ou concretions opaques, telles que les jades, serpentines, pierres ollaires, pierres-de-lard, et qui toutes nous démontrent, par leur poli onctueux au toucher, par leur transparence graisseuse, aussi bien que par l'endurcissement qu'elles prennent au feu, et leur résistance à s'y fondre, qu'elles ne tirent leur origine immédiate ni du quartz, ni du feldspath, ni du schorl,
et qu'elles ne sont que des produits ou stalactites du mica plus ou moins atténué par l'impression des éléments humides.

Lorsque l'eau, chargée des molécules de ces verres primitifs, s'est trouvée en même temps imprégnée ou plutôt mélangée de parties terreuses ou ferrugineuses, elle a de même formé, par stillation, les cailloux opaques, qui ne diffèrent des autres produits quartzeux que par leur entière opacité; et lorsque ces cailloux ont été saisis et réunis par un ciment pierreux, leur agrégation a formé des pierres auxquelles on a donné le nom de poudlingues, qui sont les produits ultérieurs et les moins purs de toutes les matières vitreuses; car le ciment qui lie les cailloux dont ils sont composés est souvent impur, et toujours moins dur que la substance des cailloux.

Les verres primitifs ont formé, dès les premiers temps, et par la seule action du feu, les porphyres et les granites; ce sont les premiers détriments et les exfoliations en petites lames et en grains plus ou moins gros du quartz, du jaspe, du feld-spath, du schorl, et du mica. L'eau ne paroît avoir eu aucune part à leur formation, et les masses immenses de granite qui se trouvent par montagnes dans presque toutes les régions du globe nous démontrent que l'agrégation de ces particules vitreuses s'est faite par le feu primitif; elles nageoient à la surface du globe liquéfié en forme de scories, elles se sont dès lors réunies par la seule force de leur affinité. Le jaspe n'est entré que dans la composition des porphyres; les quatre autres verres primitifs sont entrés dans la composition des granites.

Les matières provenant de la décomposition de ces
verres primitifs et de leurs agrégats par l'action et l'intermède de l'eau, telles que les grès, les argiles et les schistes, ont produit d'autres stalactites opaques mêlées de parties vitreuses et argileuses, telles que les cos, les pierres à rasoir, qui ne diffèrent des cailloux qu'en ce que leurs parties constituantées étaient pour la plupart converties en argile lorsqu'elles se sont réunies; mais le fond de leur essence est le même, et ces pierres tirent également leur origine de la décomposition des verres primitifs par l'intermède de l'eau.

La matière calcaire n'a été formée que postérieurement à la matière vitreuse; l'eau a eu la plus grande part à sa composition, et fait même partie de sa substance, qui, lorsqu'elle est réduite à l'homogénéité, devient transparente: aussi cette matière calcaire produit des stalactites transparentes, telles que le cristal d'Islande et tous les spaths et gypses blancs ou colorés; et quand elle n'a été divisée par l'eau qu'en particules plus grossières, elle a formé les grandes masses des albâtres, des marbres de seconde formation, et des plâtres, qui ne sont que des agrégats opaques des débris et détrits de substances coquilleuses ou des premières pierres calcaires, dont les particules ou les grains, transportés par les eaux, se sont réunis et ont formé les plus anciens bancs des marbres et autres pierres calcaires.

Et lorsque ce suc calcaire ou gypseux s'est mêlé avec le suc vitreux, leur mélange a produit des concrétions qui participent de la nature des deux, telles que les marnes, les grès impurs, qui se présentent en grandes masses, et aussi les masses plus petites des lapis-lazuli, des zéolites, des pierres à fusil, des pierres
meulières, et de toutes les autres dans lesquelles on peut reconnaître la mixtion de la substance calcaire à la matière vitreuse.

Ces pierres mélangées de matières vitreuses et de substances calcaires sont en très grand nombre, et on les distingue des pierres purement vitreuses ou calcaires en leur faisant subir l'action des acides. Ils ne font d'abord aucune effervescence avec ces matières, et cependant elles se convertissent à la longue en une sorte de gelée.

La terre végétale, limoneuse, et bolaire, dont la substance est principalement composée des détriments des végétaux et des animaux, et qui a retenu une portion du feu contenu dans tous les êtres organisés, a produit des corps ignés et des stalactites phosphorescentes, opaques, et transparentes; et c'est moins par l'intermédé de l'eau que par l'action du feu contenu dans cette terre qu'ont été produites les pyrites et autres stalactites ignées, qui se sont toutes formées séparément par la seule puissance du feu contenu dans le résidu des corps organisés. Ce feu s'est formé des sphères particulières dans lesquelles la terre, l'air, et l'eau, n'ont entrés qu'en petite quantité; et ce même feu s'étant fixé avec les acides a produit les pyrites, et avec les alcalis il a formé les diamants et les pierres précieuses, qui toutes contiennent plus de feu que toute autre matière.

Et comme cette terre végétale et limoneuse est toujours mêlée de parties de fer, les pyrites en contiennent une grande quantité, tandis que les spaths pe-sants, quoique formés par cette même terre, et quoique très denses, n'en contiennent point du tout. Ces spaths
pesants sont tous phosphorescents, et ils ont plusieurs autres rapports avec les pyrites et les pierres précieuses ; ils sont même plus pesants que le rubis, qui de toutes ces pierres est le plus dense. Ils conservent aussi plus long-temps la lumière, et pourraient bien être la matrice de ces brillants produits de la nature.

Ces spaths pesants sont homogènes dans toute leur substance, car ceux qui sont transparents et ceux qu'on réduit à une petite épaisseur ne donnent qu'une simple réfraction comme le diamant et les autres pierres précieuses, dont la substance est également homogène dans toutes ses parties.

Les pyrites, formées en assez peu de temps, rendent aisément le feu qu'elles contiennent ; l'humidité seule suffit pour le faire exhalar : mais le diamant et les pierres précieuses, dont la dureté et la texture nous indiquent que leur formation exige un très grand temps, conservent à jamais le feu qu'elles contiennent, ou ne le rendent que par la combustion.

Les principes salins, qu'on peut réduire à trois, savoir : l'acide, l'alcali, et l'arsenic, produisent, par leur mélange avec les matières terreuses ou métalliques, des concrétions opaques ou transparentes, et forment toutes les substances salines et toutes les minéralisations métalliques.

Les métaux et leurs minerais de première formation, en subissant l'action de l'acide aérien et des sels de la terre, produisent les mines secondaires, dont la plupart se présentent en concrétions opaques, et quelques unes en stalactites transparentes. Le feu agit sur les métaux comme l'eau sur les sels ; mais les cristaux métalliques produits par le moyen du feu sont opa-
GÉNÉSIE DES MINÉRAUX.

ques, au lieu que les cristaux salins sont diaphanes ou demi-transparents.

Enfin toutes les matières vitreuses, calcaires, gypseuses, limoneuses ou végétales, salines et métalliques, en subissant la violente action du feu dans les volcans, prennent de nouvelles formes : les unes se subliment en soufre et en sel ammoniac ; les autres s’exhalent en vapeurs et en cendres ; les plus fixes forment les basaltes et les laves, dont les détriments produisent les tripolis, les pouzzolanes, et se changent en argile, comme toutes les autres matières vitreuses produites par le feu primitif.

Cette récapitulation présente en raccourci la génésisie ou filiation des minéraux, c’est-à-dire la marche de la nature dans l’ordre successif de ses productions dans le règne minéral. Il sera donc facile de s’en représenter l’ensemble et les détails, et de les arranger dorénavant d’une manière moins arbitraire et moins confuse qu’on ne l’a fait jusqu’à présent.
TRAITÉ DE L'AIMANT

ET DE SES USAGES.

ARTICLE PREMIER.

Des forces de la nature en général, et en particulier de l'électricité et du magnétisme.

Il n'y a dans la nature qu'une seule force primitive, c'est l'attraction réciproque entre toutes les parties de la matière. Cette force est une puissance émanée de la puissance divine, et seule elle a suffi pour produire le mouvement et toutes les autres forces qui animent l'univers; car, comme son action peut s'exercer en deux sens opposés, en vertu du ressort qui appartient à toute matière, et dont cette même puissance d'attraction est la cause, elle repousse autant qu'elle attire. On doit donc admettre deux effets généraux, c'est-à-dire l'attraction et l'impulsion, qui n'est que la répulsion : la première, également répartie et toujours subsistante dans la matière; et la seconde, variable, occasionelle, et dépendante de la première. Autant l'attraction maintient la cohérence et la dureté des corps, autant l'impulsion tend à les désunir et à
les séparer. Ainsi, toutes les fois que les corps ne sont pas brisés par le choc, et qu'ils sont seulement comprimés, l'attraction, qui fait le lien de la cohérence, rétablit les parties dans leur première situation en agissant en sens contraire, par répulsion, avec autant de force que l'impulsion avait agi en sens direct; c'est ici, comme en tout, une réaction égale à l'action. On ne peut donc pas rapporter à l'impulsion les effets de l'attraction universelle; mais c'est au contraire cette attraction générale qui produit, comme première cause, tous les phénomènes de l'impulsion.

En effet, doit-on jamais perdre de vue les bornes de la faculté que nous avons de communiquer avec la nature? doit-on se persuader que ce qui ne tombe pas sous nos sens puisse se rapporter à ce que nous voyons ou palpons? L'on ne connaît les forces qui animent l'univers que par le mouvement et par ses effets; ce mot même de force ne signifie rien de matériel, et n'indique rien de ce qui peut affecter nos organes, qui cependant sont nos seuls moyens de communication avec la nature. Ne devons-nous pas renoncer dès lors à vouloir mettre au nombre des substances matérielles ces forces générales de l'attraction et de l'impulsion primitive, en les transformant, pour aider notre imagination, en matières subtiles, en fluides élastiques, en substances réellement existantes, et qui, comme la lumière, la chaleur, le son, et les odeurs, devroient affecter nos organes? car ces rapports avec nous sont les seuls attributs de la matière que nous puissions saisir, les seuls que l'on doive regarder comme des agents mécaniques: et ces agents eux-mêmes, ainsi que leurs effets, ne dépendent-ils pas plus ou moins, et toujours,
de la force primitive, dont l'origine et l'essence nous seront à jamais inconnues, parce que cette force en effet n'est pas une substance, mais une puissance qui anime la matière ?

Tout ce que nous pouvons concevoir de cette puissance primitive d'attraction, et de l'impulsion ou répulsion qu'elle produit, c'est que la matière n'a jamais existé sans mouvement; car l'attraction étant essentielle à tout atome matériel, cette force a nécessairement produit du mouvement toutes les fois que les parties de la matière se sont trouvées séparées ou éloignées les unes des autres : elles ont dès lors été forcées de se mouvoir et de parcourir l'espace intermédiaire pour s'approcher et se réunir. Le mouvement est donc aussi ancien que la matière, et l'impulsion ou répulsion est contemporaine de l'attraction; mais, agissant en sens contraire, elle tend à éloigner tout ce que l'attraction a rapproché.

Le choc, et toute violente attrition entre les corps, produit du feu en divisant et repoussant les parties de la matière : et c'est de l'impulsion primitive que cet élément a tiré son origine; élément lequel seul est actif et sert de base et de ministre à toute force impulsive, générale, et particulière, dont les effets sont toujours opposés et contraires à ceux de l'attraction universelle. Le feu se manifeste dans toutes les parties de l'univers, soit par la lumière, soit par la chaleur; il brille dans le soleil et dans les astres fixes; il tient encore en incandescence les grosses planètes; il échauffe plus ou moins les autres planètes et les comètes; il a aussi pénétré, fondu, enflammé la matière de notre globe, lequel, ayant subi l'action de ce feu
primitif, est encore chaud; et quoique cette chaleur s'évapore et se dissipe sans cesse, elle est néanmoins très active et subsiste en grande quantité, puisque la température de l'intérieur de la terre, à une médiocre profondeur, est de plus de dix degrés.

C'est de ce feu intérieur ou de cette chaleur propre du globe que provient le feu particulier de l'électricité. Nous avons déjà dit dans notre Introduction à l'Histoire des Minéraux, et tout nous le persuade, que l'électricité tire son origine de cette chaleur intérieure du globe. Les émanations continues de cette chaleur intérieure s'élèvent perpendiculairement à chaque point de la surface de la terre: elles sont bien plus abondantes à l'équateur que dans toutes les autres parties du globe; assez nombreuses dans les zones tempérées, elles deviennent nulles ou presque nulles aux régions polaires, qui sont couvertes par la glace ou resserrées par la gelée. Le fluide électrique, ainsi que les émanations qui le produisent, ne peuvent donc jamais être en équilibre autour du globe; ces émanations doivent nécessairement partir de l'équateur où elles abondent, et se porter vers les pôles où elles manquent.

Ces courants électriques qui partent de l'équateur et des régions adjacentes se compriment et se resserrent en se dirigeant à chaque pôle terrestre, à peu près comme les méridiens se rapprochent les uns des autres; dès lors la chaleur obscure qui émane de la terre et forme ces courants électriques peut devenir lumineuse en se condensant dans un moindre espace, de la même manière que la chaleur obscure de nos fourneaux devient lumineuse lorsqu'on la condense.
en la tenant enfermée; et c'est là la vraie cause de ces feux qu'on regardoit autrefois comme des incen-
dies célestes, et qui ne sont néanmoins que des effets
electriques auxquels on a donné le nom d'auror-
laire. Elles sont plus fréquentes dans les saisons de
l'automne et de l'hiver, parce que c'est le temps où
les émanations de la chaleur de la terre sont le plus
complètement supprimées dans les zones froides, tan-
dis qu'elles sont toujours presque également abon-
dantes dans la zone torride; elles doivent donc se
porter alors avec plus de rapidité de l'équateur aux
pôles, et devenir lumineuses par leur accumulation
et leur resserrement dans un plus petit espace 1.
Mais ce n'est pas seulement dans l'atmosphère et à
la surface du globe que ce fluide électrique produit
de grands effets; il agit également, et même avec beau-
coup plus de force, à l'intérieur du globe, et surtout
dans les cavités qui se trouvent en grand nombre au
dessous des couches extérieures de la terre; il fait jaillir,
dans tous ces espaces vides, des foudres plus ou
moins puissantes; et en recherchant les diverses ma-
nières dont peuvent se former ces foudres souterrai-
nes, nous trouverons que les quartz, les jaspes,

1. M. le comte de Lacépède a publié, dans le Journal de Physique
de 1778, un mémoire dans lequel il suit les mêmes vues, relatives à
l'électricité, que nous avons données dans notre Introduction à l'Histoire des Minéraux, et rapporte l'origine des aurores boréales à l'accu-
mulation du feu électrique qui part de l'équateur, et va se ramasser
au dessus des contrées polaires. En 1779 ou 1780, dans une des séances
publiques de l'Académie des Sciences, un mémoire de M. Franklin,
dans lequel ce savant physicien attribue aussi la formation des aurores
boréales au fluide électrique qui se porte et se condense au dessus des
glaces des deux pôles.
feld-spats, les schorls, les granites, et autres matières vitreuses, sont électrisables par frottement comme nos verres factices, dont on se sert pour produire la force électrique et pour isoler les corps auxquels on veut la communiquer.

Ces substances vitreuses doivent donc isoler les amas d'eau qui peuvent se trouver dans ces cavités, ainsi que les débris des corps organisés, les terres humides, les matières calcaires, et les divers filons métalliques. Ces amas d'eau, ces matières métalliques, calcaires, végétales, et humides, sont au contraire les plus puisants conducteurs du fluide électrique. Lors donc qu'elles sont isolées par les matières vitreuses, elles peuvent être chargées d'un excès plus ou moins considérable de ce fluide, de même qu'en sont chargées les nuées environnées d'un air sec qui les isole.

Des courants d'eau produits par des pluies plus ou moins abondantes ou d'autres causes locales et accidentelles peuvent faire communiquer des matières conductrices, isolées, et chargées de fluide électrique, avec d'autres substances de même nature, également isolées, mais dans lesquelles ce fluide n'aura pas été accumulé ; alors ce fluide de feu doit s'élançer du premier amas d'eau vers le second, et dès lors il produit la foudre souterraine dans l'espace qu'il parcourt ; les matières combustibles s'allument ; les explosions se multiplient ; elles soulevent et ébranlent des portions de terre d'une grande étendue, et des blocs de rocher en très grande masse et en bancs continus. Les vents souterrains, produits par ces grandes agitations, soufflent et s'élancent dès lors avec violence contre des substances conductrices de l'électricité, isolées
par des matières vitreuses : ils peuvent donc aussi électriser ces substances de la même manière que nous électrions, par le moyen de l'air fortement agité, des conducteurs isolés, humides ou métalliques.

La foudre allumée par ces diverses causes, et mettant le feu aux matières combustibles renfermées dans le sein de la terre, peut produire des volcans et d'autres incendies durables. Les matières enflammées dans leurs foyers doivent, en échauffant les schistes et les autres matières vitreuses de seconde formation qui les contiennent et les isolent, augmenter l'affinité de ces dernières substances avec le feu électrique ; elles doivent alors leur communiquer une partie de celui qu'elles possèdent, et par conséquent devenir électrisées en moins. Et c'est par cette raison que lorsque ces matières fondues, et rejetées par les volcans, coulent à la surface de la terre, ou qu'elles s'élèvent en colonnes ardentes au dessus des cratères, elles attirent le fluide électrique des divers corps qu'elles rencontrent, et même des nuages suspendus au dessus ; car l'on voit alors jaillir de tous côtés des foudres aériennes qui s'élancent vers les matières enflammées vomies par les volcans ; et comme les eaux de la mer parviennent aussi dans les foyers des volcans, et que la flamme est, comme l'eau, conductrice de l'électricité, elles

1. Il y a environ vingt ans que le nommé Aubert, faïencier à la Tour-d'Aigues, étant occupé à cuire une fournée de faïence, vit avec le plus grand étonnement le feu s'éteindre dans l'instant même, et passer d'un feu de cerise à l'obscurité totale. Le four étoit allumé depuis plus de vingt heures, et la vitrification de l'émail des pièces étoit déjà avancée. Il fit tous ses efforts pour rallumer le feu, et achever sa cuite, mais inutilement. Il fut obligé de l'abandonner.

Je fus tout de suite averti de cet accident ; je me transportai à sa
TRAITÉ DE L'AÏMANT

communicquent une grande quantité de fluide électrique aux matières enflammées et électrisées en moins ;

fabrique, où je vis ce four, effectivement obscur, conservant encore toute sa chaleur.

Il y avait eu ce jour là, vers les trois heures après midi, un orage duquel partit le coup de tonnerre qui avait produit l'effet dont je viens de parler. L'on avait vu du dehors la foudre : le faïencier avait entendu un coup qui n'avait rien d'extraordinaire, sans apercevoir l'éclair ni la moindre clarté. Rien n'étoit dérangé dans la chambre du four ni au toit. Le coup de tonnerre étoit entré par la gueule du loup faite pour laisser échapper la fumée, et placée perpendiculairement sur le four avec une ouverture de plus de dix pieds carrés.

Curieux de voir ce qui s'étoit passé dans l'intérieur du four, j'assistai à son ouverture deux jours après. Il n'y avait rien de cassé, ni même de dérangé ; mais l'œil appliqué sur toutes les pièces étoit entièrement enfumé et tacheté partout de points blancs et jaunes, sans doute dus aux parties métalliques qui n'avoient point eu le temps d'entrer en fusion.

Il est à croire que la foudre avait passé à portée du feu, qui l'avoit attirée et absorbée sans qu'elle eût eu le temps ni le pouvoir d'éclater.

Mais pour connoître la force de cet effet, il est nécessaire d'être instruit de la forme des fours en usage dans nos provinces, lesquels font une masse de feu bien plus considérable que ceux des autres pays, parce qu'étant obligé d'y cuire avec les fagots ou branches de pins ou de chênes verts, qui donnent un feu extrêmement ardent, on est forcé d'écarteler le foyer du dépôt de la marchandise.

La flamme parcourt dans ces fours plus de six toises de longueur. Ils sont partagés en trois pièces : le corps du four, relevé sur le terrain, y est construit entre deux voûtes ; le dessous est à moitié enterré pour mieux conserver la chaleur, et il est précédé d'une voûte qui s'étend jusqu'à la porte par laquelle l'on jette les fagots au nombre de trois ou quatre à la fois. On a l'attention de laisser brûler ces fagots sans en fournir de nouveaux jusqu'à ce que la flamme, après avoir circulé dans tout le corps et s'être élevée plus d'un pied au sommet du four, soit absolument tombée.

Le four dans lequel tomba le tonnerre est de huit pieds de largeur en carré sur environ dix pieds de hauteur. Le dessous du four a les mêmes dimensions, mais il est élevé seulement de six pieds. On l'emploie à cuire des biscuits et le massicot pour le blanc de la fournée.
ce qui produit de nouvelles foudres, et cause d'autres secousses et des explosions qui bouleversent et entraînent la surface de la terre.

De plus, les substances vitreuses qui forment les parois des cavités des volcans, et qui ont reçu une quantité de fluide électrique proportionnée à la chaleur qui les a pénétrées, s'en trouvent surchargées à mesure qu'elles se refroidissent; elles lancent de nouvelles foudres contre les matières enflammées, et produisent de nouvelles secousses qui se propagent à des distances plus ou moins grandes, suivant la disposition des matières conductrices. Et comme le fluide électrique peut parcourir en un instant l'espace le plus vaste, en ébranlant tout ce qui se trouve sur son passage, c'est à cette cause que l'on doit rapporter les commotions et les tremblements de terre qui se font sentir, presque dans le même instant, à de très grandes distances; car, si l'on veut juger de la force prodigieuse des foudres qui produisent les tremblements de terre les plus étendus, que l'on compare l'espace immense et d'un très grand nombre de lieues que les substances conductrices occupent quelquefois dans le sein de la terre, avec les petites dimensions des nuages qui lancent la foudre des airs, dont la force suffit cependant pour renverser les édifices les plus solides.

On a vu le tonnerre renverser des blocs de rocher suivante. Quant à la gorge du four, elle est aussi de six pieds de haut, mais de largeur inégale, puisque le four n'a pas quatre pieds de large à son ouverture. Il est donc aisé de conclure que la force qui put en un seul instant anéantir une pareille masse ignée dut être d'une puissance étonnante. Extrait d'une lettre de M. de la Tour-d'Aigues, président à mortier au parlement de Provence, écrite à M. Daubenton, garde du Cabinet du Roi, de l'Académie des Sciences.

ET DE SES USAGES.
de plus de vingt-cinq toises cubes. Les conducteurs souterrains peuvent être au moins cinquante mille fois plus volumineux que les nuages orageux : si leur force était en proportion, la foudre qu'ils produisent pourrait donc renverser plus de douze cent mille toises cubes ; et comme la chaleur intérieure de la terre est beaucoup plus grande que celle de l'atmosphère à la hauteur des nuages, la foudre de ces conducteurs électriques doit être augmentée dans cette proportion, et dès lors on peut dire que cette force est assez puissante pour bouleverser et même projeter plusieurs millions de toises cubes.

Maintenant si nous considérons le grand nombre des volcans actuellement agissants, et le nombre infiniment plus grand des anciens volcans éteints, nous reconnaîtrons qu'ils forment de larges bandes dans plusieurs directions qui s'étendent autour du globe, et occupent des espaces d'une très longue étendue, dans lesquels la terre a été bouleversée, et s'est souvent affaissée au dessous ou élevée au dessus de son niveau. C'est surtout dans les régions de la zone torride que se sont faits les plus grands changements. On peut suivre la ruine des continents terrestres et leur abaissement sous les eaux, en parcourant les îles de la mer du Sud. On peut voir, au contraire, l'élévation des terres par l'inspection des montagnes de l'Amérique méridionale, dont quelques unes sont encore des volcans agissants. On retrouve les mêmes volcans dans les îles de la mer Atlantique, dans celles de l'Océan indien, et jusque dans les régions polaires, comme en Islande, en Europe, et à la Terre-de-Feu à l'extrémité de l'Amérique. La zone tempérée offre de même dans les deux
hémisphères une infinité d'indices de volcans éteints; et l'on ne peut douter que ces énormes explosions, auxquelles l'électricité souterraine a la plus grande part, n'aient très anciennement bouleversé les terres à la surface du globe, à une assez grande profondeur, dans une étendue de plusieurs centaines de lieues en différents sens.

M. Faujas de Saint-Fond, l'un de nos plus savants naturalistes, a entrepris de donner la carte de tous les terrains volcanisés qui se voient à la surface du globe, et dont on peut suivre le cours sous les eaux de la mer, par l'inspection des îles, des écueils, et autres fonds volcanisés. Cet infatigable et bon observateur a parcouru tous les terrains qui offrent en Europe des indices du feu volcanique; et il a extrait des voyageurs les renseignements sur cet objet, dans toutes les parties du monde : il a bien voulu me fournir des notes en grand nombre, sur tous les volcans de l'Europe qu'il a lui-même observés; j'ai cru devoir en présenter ici l'extrait, qui ne pourra que confirmer tout ce que nous avons dit sur les causes et les effets de ces feux souterrains.

En prenant le volcan brûlant du mont Hécla en Islande pour point de départ, on peut suivre, sans interruption, une assez large zone entièrement volcanisée, où l'observateur ne perd jamais de vue, un seul instant, les laves de toute espèce. Après avoir parcouru cette île, qui n'est qu'un amas de volcans éteints, adossés contre la montagne principale, dont les flancs sont encore embrasés, supposons qu'il s'embarque à la pointe de l'île qui porte le nom de Long-Nez. Il trouvera sur sa route Westerhorn, Portland,
et plusieurs autres îles volcaniques; il visitera celle de Stroma, remarquable par ses grandes chaussées de basalte, et ensuite les îles de Féroé, où les laves et les basaltes se trouvent mêlés de zéolites. Depuis Féroé, il se portera sur les îles de Shetland, qui sont toutes volcanisées; et de là aux îles Orcades, lesquelles paraissent s'être élevées en entier d'une mer de feu. Les Orcades sont comme adhérentes aux îles Hébrides. C'est dans cet archipel que se trouvent celles de Saint-Kilda, Sky, Iona, Lyri, Ilikenkil; la vaste et singulière caverne basaltique de Staffa, connue sous le nom de grotte de Fingal; l'île de Mull, qui n'est qu'un composé de basalte, pétri, pour ainsi dire, avec de la zéolite.

De l'île de Mull, on peut aller en Écosse par celle de Kereyru, également volcanisée, et arriver à Dunstaffuge, ou à Dunkeld, sur les laves et les basaltes, que l'on peut suivre sans interruption par le duché d'Inverary, par celui de Perth, par Glasgow, jusqu'à Édimbourg. Ici les volcans semblent avoir trouvé des bornes qui les ont empêchés d'entrer dans l'Angleterre proprement dite; mais ils se sont repliés sur eux-mêmes: on les suit sans interruption et sur une assez large zone qui s'étend depuis Dunbar, Cowper, Stirling, jusqu'au bord de la mer, vers Port-Patrick. L'Irlande est en face, et l'on trouve à une petite distance les écueils du canal Saint-George, qui sont aussi volcanisés; l'on touche bientôt à cette immense colonnade connue sous le nom de Chaussée des Géants, et formant une ceinture de basalte prismatique, qui rend l'abord de l'Irlande presque inaccessible de ce côté.
En France, on peut reconnaître des volcans éteints en Bretagne, entre Royan et Tréguier, et les suivre dans une partie du Limousin, et en Auvergne, où se sont faits de très grands mouvements, et de fortes éruptions de volcans actuellement éteints; car les montagnes, les pics, les collines de basalte et de lave y sont si rapprochés, si accumulés, qu'ils offrent un système bizarre et disparate, très différent de la disposition et de l'arrangement de toutes les autres montagnes. Le Mont-d'Or et le Puy-de-Dôme peuvent être regardés comme autant de volcans principaux qui dominent sur tous les autres.

Les villes de Clermont, de Riom, d'Issoire, ne sont bâties qu'avec des laves, et ne reposent que sur des laves. Le cours de ces terrains volcanisés s'étend jusqu'au delà de l'Allier, et on en voit des indices dans une partie du Bourbonnois, et jusque dans la Bourgogne, auprès de Mont-Cénis, où l'on a reconnu le pic conique de Drevin, formé par un faisceau de basalte, qui s'élève en pointe à trois cents pieds de hauteur, et forme une grande borne qu'on peut regarder comme la limite du terrain volcanisé. Ces mêmes volcans d'Auvergne s'étendent, d'un côté, par Saint-Flour et Aurillac, jusqu'en Rouergue, et, de l'autre, dans le Velay; et en remontant la Loire jusqu'à sa source, parmi les laves, nous arriverons au mont Mezin, qui est un grand volcan éteint, dont la base a plus de douze lieues de circonférence, et dont la hauteur s'élève au dessus de neuf cents toises. Le Vi- varais est attenant au Velay, et l'on y voit un très grand nombre de cratères de volcans éteints, et des chaussées de basalte que l'on peut suivre dans leur
largeur jusqu'à Rochemaure, au bord du Rhône, en face de Montélimar : mais leur développement en longueur s'étend par Cassan, Saint-Tibéri, jusqu'à Agde, où la montagne volcanique de Saint-Loup offre des escarpements de lave d'une grande épaisseur et d'une hauteur très considérable.

Il paraît qu'auprès d'Agde les laves s'enfoncent sous la mer ; mais on ne tarde pas à les voir reparaître entre Marseille et Toulon, où l'on connoit le volcan d'Olioulles et celui des environs de Tourves. De grands dépôts calcaires ont recouvert postérieurement plusieurs de ces volcans : mais on en voit dont les sommités paroissent sortir du milieu de ces antiques dépouilles de la mer ; ceux des environs de Fréjus et d'Antibes sont de ce nombre.

Ici les Alpes maritimes ont servi de barrière aux feux souterrains de la Provence, et les ont, pour ainsi dire, empêchés de se joindre à ceux de l'Italie par la voie la plus courte ; car derrière ces mêmes Alpes il se trouve des volcans qui, en ligne droite, ne sont éloignés que de trentelieues de ceux de Provence.

La zone incendiée a donc pris une autre route ; on peut même dire qu'elle a une double direction en partant d'Antibes. La première arrive, par une communication sous-marine, en Sardaigne ; elle coupe le cap Carbonara, traverse les montagnes de cette île, se replonge sous les eaux pour reparaître à Carthagène, et se joindre à la chaîne volcanisée du Portugal, jusqu'à Lisbonne, pour traverser ensuite une partie de l'Espagne, où M. Bowles a reconnu plusieurs volcans éteints. Telle est la première ligne de jonction des volcans de France.
La seconde se dirige également par la mer, et va joindre l'Italie entre Gênes et Florence. On entre ici dans un des plus vastes domaines du feu : l'incendie a été presque universel dans toute l'Italie et la Sicile, où il existe encore deux volcans brûlants, le Vésuve et l'Etna, des terrains embrasés, tels que la Solfatara, des îles incendiées, dont une, celle de Stromboli, vomit sans relâche, et dans tous les temps, des laves, des pierres ponces, et jette des flammes qui éclairent la mer au loin.

Le Vésuve nous offre un foyer en activité, couronné et recouvert de toutes parts des produits les plus remarquables du feu, et jusqu'à des villes ensevelies à dix-huit cents pieds de profondeur, sous les matières projetées par le volcan. D'un côté, la mer nous montre les îles volcanisées d'Ischia, de Procida, de Caprée, etc., et de l'autre le continent nous offre la pointe de Misène, Baïes, Pouzzol, le Pausilippe, Portici, la côte de Sorento, le cap de Minerve.

Le lac Agnano, Castrani, le Monte-Nuovo, le Monte-Barbaro, la Solfatara, sont autant de cratères qui ont vomi, pendant plusieurs siècles, des montceaux immenses de matières volcaniques.

Mais une chose digne de remarque, c'est que les volcans des environs de Naples et de la terre de Labour, comme les autres volcans dont nous venons de parler, semblent toujours éviter les montagnes primitives, quartzeuses et granitiques, et c'est par cette raison qu'ils n'ont point pris leur direction par la Calabre pour aller gagner la Sicile. Les grands courants de laves se sont frayé une route sous les eaux de la mer, et arrivent du golfe de Naples, le long de la côte
de Sorente, paroissant à découvert sur le rivage, et formant des écueils de matières volcaniques, qu'on voit de distance en distance, depuis le promontoire de Minerve jusqu'aux îles de Lipari. Les îles de Bazi-luzzo, les Cabianca, les Canera, Panaria, etc., sont sur cette ligne. Viennent ensuite l'île des Salines, celles de Lipari, Volcanello et Volcano, autre volcan brûlant où les feux souterrains fabriquent en grand de grosses masses de véritables pierres ponces. En Si-cile, les monts Neptuniens, comme les Alpes en Pro-vence, ont forcé les feux souterrains à suivre leurs contours, et à prendre leur direction par le val De-mona. Dans cette île, l'Etna élève fièremenl sa tête au dessus de tous les volcans de l'Europe ; les éjec-tions qu'a produites ce foyer immense coupent le val de Noto, et arrivent à l'extrémité de la Sicile par le cap Passaro.

Les matières volcaniques disparaissent encore ici sous les eaux de la mer ; mais les écueils de basalte, qu'on voit de distance en distance, sont des signaux évidents qui tracent la route de l'embrasement : on peut arriver, sans s'en écarter, jusqu'à l'Archipel, où l'on trouve Santorini, et les autres volcans qu'un ob-servateur célèbre a fait connaître dans son Voyage pittoresque de la Grèce.

De l'Archipel, on peut suivre par la Dalmatie les volcans éteints décrits par M. Fortis, jusqu'en Hon-grie, où l'on trouve ceux qu'a fait connoître M. Born dans ses Lettres sur la minéralogie de ce royaume. De la Hongrie, la chaîne volcanisée se prolonge tou-
jours, sans interruption, par l'Allemagne, et va joindre les volcans éteints d'Harovre, décrits par Raspe: ceux-ci se dirigent sur Cassel, ville bâtie sur un vaste plateau de basalte. Les feux souterrains qui ont élevé toutes les collines volcaniques des environs de Cassel ont porté leur direction par le grand cordon des hautes montagnes volcanisées de l'Habichoual, qui vont joindre le Rhin par Andernach, où les Hollandois font leur approvisionnement de tras pour le convertir en pouzzolane. Les bords du Rhin, depuis Andernach jusqu'au vieux Brisach, forment la continuité de la zone volcanisée, qui traverse le Brisgaw et se rapproche par là de la France, du côté de Strasbourg.

D'après ce grand tableau des ravages du feu dans la partie du monde qui nous est la mieux connue, pourroit-on se persuader ou même imaginer qu'il ait pu exister d’assez grands amas de matières combustibles pour avoir alimenté pendant des siècles de siècles des volcans multipliés en aussi grand nombre? Cela seul suffiroit pour nous indiquer que la plupart des volcans actuellement éteints n'ont été produits que par les foudres de l'électricité souterraine. Nous venons de voir en effet que les Pyrénées, les Alpes, l'Apenin, les monts Neptuniens en Sicile, le mont Granby en Angleterre, et les autres montagnes primitives, quartzeuses et granitiques, ont arrêté le cours des feux souterrains, comme étant, par leur nature vitreuse, imperméables au fluide électrique, dont ils ne peuvent propager l'action ni communiquer les fou-

1. Le tras est un vrai basalte compacte ou poreux, facile à broyer, et dont les Hollandois font de la pouzzolane.
dres, et qu'au contraire tous les volcans produits par les feux ou les tonnerres souterrains ne se trouvent qu'aux environs de ces montagnes primitives, et n'ont exercé leur action que sur les schistes, les argiles, les substances calcaires et métalliques, et les autres matières de seconde formation et conductrices de l'électricité; et comme l'eau est un des plus puissants conducteurs du fluide électrique, ces volcans ont agi avec d'autant plus de force, qu'ils se sont trouvés plus près de la mer, dont les eaux, en pénétrant dans leurs cavités, ont prodigieusement augmenté la masse des substances conductrices et l'action de l'électricité. Mais jetons encore un coup d'œil sur les autres différences remarquables qu'on peut observer dans la continuité des terrains volcanisés.

L'une des premières choses qui s'offrent à nos considérations, c'est cette immense continuité de basaltes et de laves, lesquels s'étendent tant à l'intérieur qu'à l'extérieur des terrains volcanisés. Ces basaltes et ces laves, contenant une très grande quantité de matières ferrugineuses, doivent être regardés comme autant de conducteurs de l'électricité; ce sont pour ainsi dire des barres métalliques, c'est-à-dire des conducteurs à plusieurs centaines de lieues du fluide électrique, et qui peuvent le transmettre en un instant de l'une à l'autre de leurs extrémités, tant à l'intérieur de la terre qu'à sa surface. L'on doit donc rapporter à cette cause les commotions et tremblements de terre qui se font sentir presque en même temps à des distances très éloignées.

Une seconde considération très importante, c'est que tous les volcans, et surtout ceux qui sont encore
actuellement agissant, portent sur des cavités dont la capacité est au moins égale au volume de leurs projections. Le Monte-Nuovo, voisin du Vésuve, s'est élevé presque subitement, c'est-à-dire en deux ou trois jours, dans l'année 1558, à la hauteur de plus de mille pieds sur une circonférence de plus d'une lieue à la base ; et cette énorme masse sortie des entrailles de la terre, dans un terrain qui n'était qu'une plaine, a nécessairement laissé des cavités au moins égales à son volume : de même il y a toute raison de croire que l'Etna, dont la hauteur est de plus de dix-huit cents toises, et la circonférence à la base de près de cinquante lieues, ne s'est élevé que par la force des foudres souterraines, et que par conséquent cette très énorme masse de matière projetée porte sur plusieurs cavités dont le vide est au moins égal au volume soulevé. On peut encore citer les îles de Santorin, qui, depuis l'année 257 avant notre ère, se sont abîmées dans la mer et élevées au-dessus à plusieurs reprises, et dont les dernières catastrophes sont arrivées en 1707. « Tout l'espace, dit M. le comte de Choiseul-Gouffier, actuellement rempli par la mer, et contenu entre Santorin et Thérasia, aujourd'hui Aspro-Nisi, faisoit partie de la grande île, ainsi que Thérasia elle-même. Un immense volcan s'est allumé et a dévoré toutes les parties intermédiaires. Je retrouve dans toute la côte de ce golfe, composée de rochers escarpés et calcinés, les bords de ce même foyer, et, si j'ose le dire, les parois internes du creuset où cette destruction s'est opérée ; mais ce qu'il faut surtout remarquer, c'est l'immense profondeur
de cet abîme, dont on n'a jamais pu réussir à trouver le fond. »

Enfin nous devons encore observer en général que le Vésuve, l'Etna, et les autres volcans, tant agissants qu'éteints, sont entourés de collines volcaniques, projetées par les feux souterrains, et qui ont dû laisser à leur place des cavités égales à leur volume. Ces collines, composées de laves et de matières fondues ou projetées, sont connues en Italie sous le nom de monticolli, et elles sont si multipliées dans le royaume de Naples, que leurs bases se touchent en beaucoup d'endroits. Ainsi le nombre des cavités ou boursouflures du globe, formées par le feu primitif, a dû diminuer par les affaissements successifs des cavernes, dont les eaux auront percé les voûtes, tandis que les feux souterrains ont produit d'autres cavités dont nous pouvons estimer la capacité par le volume des matières projetées et par l'élévation des montagnes volcaniques.

Je serois même tenté de croire que les montagnes volcaniques des Cordillières, telles que Chimboraço, Cotopaxi, Pichincha, Sangai, etc., dont les feux sont actuellement agissants, et qui s'élèvent à plus de trois mille toises, ont été soulevées à cette énorme hauteur par la force de ces feux, puisque l'Etna nous offre un exemple d'un pareil soulèvement jusqu'à la hauteur de dix-huit cents toises; et dès lors ces montagnes volcaniques des Cordillières ne doivent point être regardées comme des boursouflures primitives du globe, puis qu'elles ne sont composées ni de quartz, ni de granite, ni d'autres matières vitreuses qui au-
E T D E S S E S U S A G E S.

roient arrêté l'effet des foudres souterraines, de même qu'en Europe nous voyons les Alpes et les Pyrénées avoir arrêté et rompu tous les efforts de cette électricité. Il en doit être de même des montagnes volcaniques du Mexique et des autres parties du monde où l'on trouve des volcans encore agissants.

À l'égard des volcans éteints, quoiqu'ils aient tous les caractères des volcans actuellement brûlants, nous remarquerons que les uns, tels que le Puy-de-Dôme, qui a plus de huit cents toises d'élévation, le Cantal en Auvergne, qui en a près de mille, et le mont Mezin en Vivarais, dont la hauteur est à peu près égale à celle du Cantal, doivent avoir des cavités au dessous de leurs bases, et que d'autres se sont en partie éboulés depuis qu'ils ont cessé d'agir; cette différence se remarque par celle de la forme de leurs bouches ou cratères. Le mont Mezin, le Cantal, le collet d'Aisa, la coupe de Sausac, la Gravène de Montpezat, présentent tous des cratères d'une entière conservation, tandis que d'autres n'offrent qu'une partie de leurs bouches en entonnoir qui subsiste encore, et dont le reste s'est affaissé dans des cavités souterraines.

Mais le principal et le plus grand résultat que nous puissions tirer de tous ces faits, c'est que l'action des foudres et des feux souterrains ayant été assez violente pour élever dans nos zones tempérées des montagnes telles que l'Etna jusqu'à dix-huit cents toises de hauteur, nous devons cesser d'être étonnés de l'élevation des montagnes volcaniques des Cordillères jusqu'à trois mille toises. Deux fortes raisons me persuadent de la vérité de cette présomption. La pre-
mière c'est que le globe, étant plus élevé sous l'équateur, a dû, dès les premiers temps de sa consolidation, former des boursouflures et des cavités beaucoup plus grandes dans les parties équatoriales que dans les autres zones, et que par conséquent les foudres souterraines auront exercé leur action avec plus de liberté et de puissance dans cette région, dont nous voyons en effet que les affaissements sous les eaux et les élévations au dessus de la terre sont plus grandes que partout ailleurs, parce que, indépendamment de l'étendue plus considérable des cavités, la chaleur intérieure du globe et celle du soleil ont dû augmenter encore la puissance des foudres et des feux souterrains.

La seconde raison, plus décisive encore que la première, c'est que ces volcans, dans les Cordillères, nous démontrent qu'elles ne sont pas de première formation, c'est-à-dire entièrement composées de matières vitreuses, quartzées ou granitiques, puisque nous sommes assurés, par la continuité des terrains volcaniques dans l'Europe entière, que jamais les foudres souterraines n'ont agi contre ces matières primitives, et qu'elles en ont partout suivi les contours sans les entamer, parce que ces matières vitreuses n'étant point conductrices de l'électricité n'ont pu en subir ni propager l'action. Il est donc à présumer que toutes les montagnes volcaniques, soit dans les Cordillères, soit dans les autres parties du monde, ne sont pas de première formation, mais ont été projetées ou soulevées par la force des foudres et des feux souterrains, tandis que les autres montagnes, dans lesquelles, comme aux Alpes et aux Pyrénées, etc.,
l'on ne voit aucun indice de volcan, sont en effet les montagnes primitives, composées de matières vitreuses, qui se refusent à toute action de l'électricité.

Nous ne pouvons donc pas douter que la force de l'électricité n'ait agi en toute liberté et n'ait fait de violentes explosions dans les cavités ou boursoufflures occasionnées par l'action du feu primitif; en sorte qu'on doit présumer, avec fondement, qu'il a existé des volcans dès ces premiers temps, et que ces volcans n'ont pas eu d'autre cause que l'action des foudres souterraines. Ces premiers et plus anciens volcans n'ont été pour ainsi dire que des explosions momen-
tanées, et dont le feu n'étant pas nourri par les ma-
tières combustibles, n'a pu se manifester par des ef-
fets durables; ils se sont pour ainsi dire éteints après leur explosion, qui néanmoins a dû projeter toutes les matières que la foudre avoir frappées et déplacées. Mais lorsque, dans la suite, les eaux, les substances métalliques, et autres matières volatiles sublimées par le feu, et reléguées dans l'atmosphère, sont tombées et se sont établies sur le globe, ces substances, toutes conductrices de l'électricité, ont pu s'accumuler dans les cavernes souterraines. Les végétaux s'étant dès lors multipliés sur les hauteurs de la terre, et les co-
quillages s'étant en même temps propagés et ayant pullulé au point de former par leurs dépouilles de grands amas de matières calcaires, toutes ces matiè-
res conductrices se sont de même rassemblées dans ces cavités intérieures, et dès lors l'action des foudres électriques a dû produire des incendies durables, et d'autant plus violents que ces volcans se sont trouvés plus voisins des mers, dont les eaux, par leur conflit
avec le feu, ont encore augmenté la force et la durée des explosions, et c'est par cette raison que le pied de tous les volcans encore actuellement agissants se trouve voisin des mers, et qu'il n'en existe pas dans l'intérieur des continents terrestres.

On doit donc distinguer deux sortes de volcans : les premiers, sans aliment, et uniquement produits par la force de l'électricité souterraine ; les seconds, alimentés par les substances combustibles. Les premiers de tous les volcans n'ont été que des explosions momentanées dans le temps de la consolidation du globe. Ces explosions peuvent nous être représentées en petit par les étincelles que lance un boulet de fer rougi à blanc, en se refroidissant. Elles sont devenues plus violentes et plus fréquentes par la chute des eaux, dont le conflit avec le feu a dû produire de plus fortes secousses et des ébranlements plus étendus. Ces premiers et plus anciens volcans ont laissé des bouches ou cratères autour desquels se trouvent des laves et autres matières fondues par les foudres, de la même manière que la force électrique mise en jeu par nos foibles instruments fond ou calcine toutes les matières sur lesquelles elle est dirigée.

Il y a donc toute apparence que, dans le nombre infini de volcans éteints qui se trouvent à la surface de la terre, la plupart doivent être rapportés aux premières époques des révolutions du globe après sa consolidation, pendant lesquelles ils n'ont agi que par moments et par l'effet subit des foudres souterraines, dont la violence a soulevé les montagnes et entr'ouvert les premières couches de la terre, avant que la nature n'eût produit assez de végétaux, de pyrites, et
d'autres substances combustibles, pour servir d'aliment aux volcans durables, tels que ceux qui sont encore actuellement agissant.

Ce sont aussi ces foudres électriques souterraines qui causent la plupart des tremblements de terre : je dis la plupart, car la chute et l'affaissement subit des cavernes intérieures du globe produisent aussi des mouvements qui ne se font sentir qu'à de petites distances : ce sont plutôt des trépidations que de vrais tremblements, dont les plus fréquents et les plus violents doivent se rapporter aux commotions produites par les foudres électriques, puisque ces tremblements se font souvent sentir, presque au même moment, à plus de cent lieues de distance et dans tout l'espace intermédiaire ; c'est le coup électrique qui se propage subitement et aussi loin que s'étendent les corps qui peuvent lui servir de conducteurs. Les secousses occasionnées par ces tonnerres souterrains sont quelquefois assez violentes pour bouleverser les terres en les élevant ou les abaissant, et changer en même temps la position des sources et la direction du cours des eaux.

Lorsque cette force de l'électricité agit à la surface du globe, elle ne se manifeste pas uniquement par des foudres, par des commotions, et par les autres effets que nous venons d'exposer ; elle paroit changer de nature, et produit de nouveaux phénomènes. En effet, elle se modifie pour donner naissance à une nouvelle force à laquelle on a donné le nom de magnétisme ; mais le magnétisme, bien moins général que l'électricité, n'agit que sur les matières ferrugineuses, et ne se montre que par les effets de l'aimant
et du fer, lesquels seuls peuvent fléchir et attirer une portion du courant universel et électrique qui se porte directement, et en sens contraire, de l'équateur aux deux pôles.

Telle est donc l'origine des diverses forces, tant générales que particulières, dont nous venons de parler. L'attraction, en agissant en sens contraire de sa direction, a produit l'impulsion dès l'origine de la matière : cette impulsion a fait naître l'élément du feu, qui a produit l'électricité ; et nous allons voir que le magnétisme n'est qu'une modification particulière de cette électricité générale, qui se fléchit dans son cours vers les matières ferrugineuses.

Nous ne connaissons toutes ces forces que par leurs effets : les uns sont constants et généraux, les autres paraissent être variables et particuliers. La force d'attraction est universellement répandue ; elle réside dans tout atome de matière, et s'étend dans le système entier de l'univers, tandis que celle qui produit l'électricité agit à l'intérieur et s'étend à la surface du globe terrestre, mais n'affecte pas tous les corps de la même manière. Néanmoins cette force électrique est encore plus générale que la force magnétique, et qui n'appartient à aucune substance qu'à l'aimant et au fer.

Ces deux forces particulières ont des propriétés communes avec celle de l'attraction universelle. Toutes trois agissent à plus ou moins de distance, et les effets du magnétisme et de l'électricité sont toujours combinés avec l'effet général de l'attraction qui appartient à toute matière, et qui par conséquent influe nécessairement sur l'action de ces deux forces, dont les
effets, comparés entre eux, peuvent être semblables ou différents, variables ou constants, fugitifs ou permanents, et souvent paraître opposés ou contraires à l'action de la force universelle; car, quoique cette force d'attraction s'exerce sans cesse en tout et partout, elle est vaincue par celles de l'électricité et du magnétisme toutes les fois que ces forces agissent avec assez d'énergie pour surmonter l'effet de l'attraction, qui n'est jamais que proportionnel à la masse des corps.

Les effets de l'électricité et du magnétisme sont produits par des forces impulsives particulières, qu'on ne doit point assimiler à l'impulsion ou répulsion primitive : celle-ci s'exerce dans l'espace vide, et n'a d'autre cause que l'attraction qui force toute matière à se rapprocher pour se réunir; l'électricité et le magnétisme supposent au contraire des impulsions particulières causées par un fluide actif qui environne les corps électriques et magnétiques, et qui doit les affecter différemment, suivant leur différente nature.

Mais quel est ou peut être l'agent ou le moyen employé par la nature pour déterminer et fléchir l'électricité du globe en magnétisme vers le fer, de préférence à toute autre masse minérale ou métallique? Si les conjectures ou même de simples vues sont permises sur un objet qui, par sa profondeur et son ancienneté contemporaine des premières révolutions de la terre, semble devoir échapper à nos regards et même à l'œil de l'imagination, nous dirons que la matière ferrugineuse, plus difficile à fondre qu'aucune autre, s'est établie sur le globe avant toute autre substance métallique, et que dès lors elle fut frappée la pre-
mière, et avec plus de force et de durée, par les flammes du feu primitif : elle dut donc en contracter la plus grande affinité avec l'élément du feu ; affinité qui se manifeste par la combustibilité du fer et par la prodigieuse quantité d'air inflammable ou feu fixe qu'il rend dans ses dissolutions ; et par conséquent de toutes les matières que l'électricité du globe peut affecter, le fer, comme ayant spécialement plus d'affinité avec ce fluide de feu et avec les forces dont il est l'âme, en ressent et marque mieux tous les mouvements, tant de direction que d'inflexion particulière, dont néanmoins les effets sont tous subordonnés à la grande action et à la direction générale du fluide électrique de l'équateur vers les pôles.

Car il est certain que s'il n'y avait point de fer sur la terre il n'y aurait ni aimant ni magnétisme, et que la force électrique n'en existeroit ni ne subsisteroit pas moins, avec sa direction constante et générale de l'équateur aux pôles ; il est tout aussi certain que le cours de ce fluide se fait en deux sens opposés, c'est-à-dire de l'équateur aux deux pôles terrestres, en se resserrant et s'inclinant comme les méridiens se resserrent et s'inclinent sur le globe ; et l'on voit seulement que la direction magnétique, quoique soumise à cette grande loi, reçoit des inflexions dépendantes de la position des grandes masses de matières ferrugineuses, et de leur gisement dans les différents continents.

En comparant les effets de l'action d'une petite masse d'aimant avec ceux que produit la masse entière du globe terrestre, il paroit que ce globe possède en grand toutes les propriétés dont les aimants
ne jouissent qu’en petit. Cependant la masse du globe entier n’est pas, comme les petites masses de l’aimant, composée de matières ferrugineuses ; mais on peut dire que sa surface entière est mêlée d’une grande quantité de fer magnétique, puisque toutes les mines primitives sont attirables à l’aimant, et que de même les basaltes, les laves, et toutes les mines secondaires revivifiées par le feu et par les coups de la foudre souterraine, sont également magnétiques. C’est cette continuité de matière ferrugineuse magnétique sur la surface de la terre qui a produit le magnétisme général du globe, dont les effets sont semblables à ceux du magnétisme particulier d’une pierre d’aimant ; et c’est de l’électricité générale du globe que provient l’électricité particulière ou magnétisme de l’aimant. D’ailleurs la force magnétique n’ayant d’action que sur la matière ferrugineuse, ce seroit méconnoître la simplicité des lois de la nature que de la charger d’un petit procédé solitaire, et d’une force isolée qui ne s’exercerait que sur le fer. Il me paroit donc démontré que le magnétisme, qu’on regardoit comme une force particulière et isolée, dépend de l’électricité, dont il n’est qu’une modification occasionnée par le rapport unique de son action avec la nature du fer.

Et même, quoique le magnétisme n’appartienne qu’à la matière ferrugineuse, on ne doit pas le regarder comme une des propriétés essentielles de cette matière ; car ce n’est qu’une simple qualité accidentelle que le fer acquiert ou qu’il perd, sans aucun changement et sans augmentation ni déperdition de sa substance. Toute matière ferrugineuse qui aura subi l’action du feu prendra du magnétisme par le frotte-
ment, par la percussion, par tout choc, toute action violente de la part des autres corps : encore n'est-il pas nécessaire d'avoir recours à une force extérieure pour donner au fer cette vertu magnétique ; car il la prend aussi de lui-même, sans être ni frappé, ni mu, ni frotté : il la prend dans l'état du plus parfait repos, lorsqu'il reste constamment dans une certaine situation, exposé à l'action du magnétisme général ; car dès lors il devient aimant en assez peu de temps. Cette force magnétique peut donc agir sur le fer sans être aidée d'aucune autre force motrice ; et, dans tous les cas, elle s'en saisit sans en étendre le volume, et sans en augmenter ni diminuer la masse.

Nous avons parlé de l'aimant, comme des autres matières ferrugineuses, dans notre histoire des minéraux, à l'article du fer ; mais nous nous sommes réservé d'examiner de plus près ce minéral magnétique, qui, quoique aussi brut qu'aucun autre, semble tenir à la nature active et sensible des êtres organisés : l'attraction, la répulsion de l'aimant, sa direction vers les pôles du monde, son action sur les corps animés, et la faculté qu'il a de communiquer toutes ses propriétés sans en perdre aucune, sans que ses forces s'épuisent, et même sans qu'elles subissent le moindre affaiblissement ; toutes ces qualités, réunies ou séparées, paraissent être autant de vertus magiques, et sont au moins des attributs uniques, des singularités de nature d'autant plus étonnantes qu'elles semblent être sans exemple, et que, n'ayant été jusqu'ici que mal connues et peu comparées, on a vainement tenté d'en deviner les causes.

Les philosophes anciens, plus sages, quoique moins
instruits que les modernes, n'ont pas eu la vaine pré-
tention de vouloir expliquer par des causes mécani-
ques tous les effets de la nature; et lorsqu'ils ont dit
que l'aimant avait des affections d'amour et de haine,
ils indiquoient seulement, par ces expressions, que
la cause de ces affections de l'aimant devoit avoir quel-
que rapport avec la cause qui produit de semblables
affections dans les êtres sensibles: et peut-être se
trompoient-ils moins que les physiciens récents, qui
ont voulu rapporter les phénomènes magnétiques aux
lois de notre mécanique grossière; aussi tous leurs
efforts, tous leurs raisonnements, appuyés sur des
suppositions précaires, n'ont abouti qu'à démontrer
l'erreur de leurs vues dans le principe, et l'insuffisance
de leurs moyens d'explication. Mais, pour mieux con-
naître la nature du magnétisme et sa dépendance de
l'électricité, comparons les principaux effets de ces
deux forces, en présentant d'abord tous les faits sem-
blables ou analogues, et sans dissimuler ceux qui pa-
roissent différents ou contraires.

L'action du magnétisme et celle de l'électricité
sont également variables, tantôt en plus, tantôt en
moins, et leurs variations particulières dépendent en
grande partie de l'état de l'atmosphère. Les phéno-
mènes électriques que nous pouvons produire aug-
mentent en effet ou diminuent de force, et même
sont quelquefois totalement supprimés, suivant qu'il
y a plus ou moins d'humidité dans l'air, que le fluide
electrique s'est plus ou moins répandu dans l'atmo-
sphère, et que les nuages orageux y sont plus ou moins
accumulés. De même, les barres de fer que l'on veut
aimanter par la seule exposition aux impressions du
magnétisme général acquièrent plus ou moins promptement la vertu magnétique, suivant que le fluide électrique est plus ou moins abondant dans l'atmosphère; et les aiguilles des boussoles éprouvent des variations, tant périodiques qu'irrégulières, qui ne paraissent dépendre que du plus ou du moins de force de l'électricité de l'air.

L'aimant primordial n'est qu'une matière ferrugineuse qui, ayant d'abord subi l'action du feu primitif, s'est ensuite aimantée par l'impression du magnétisme du globe; et en général la force magnétique n'agit que sur le fer ou sur les matières qui en contiennent: de même la force électrique ne se produit que dans certaines matières, telles que l'ambre, les résines, les verres, et les autres substances qu'on appelle électriques par elles-mêmes, quoiqu'elle puisse se communiquer à tous les corps.

Les aimants ou fers aimantés s'attirent mutuellement dans un sens, et se repoussent réciproquement dans le sens opposé; cette répulsion et cette attraction sont plus sensibles lorsqu'on approche l'un de l'autre leurs pôles de même nom ou de différent nom. Les verres, les résines, et les autres corps électriques par eux-mêmes, ont aussi, dans plusieurs circonstances, des parties polaires, des portions électrisées en plus, et d'autres en moins, dans lesquelles l'attraction et la répulsion se manifestent par des effets constants et bien distincts.

Les forces électrique et magnétique s'exercent également en sens opposé et en sens direct; et leur réaction est égale à leur action.

On peut, en armant les aimants d'un fer qui les
embrasse, diriger ou accumuler sur un ou plusieurs points la force magnétique; on peut de même, par le moyen des verres et des résines, ainsi qu’en isolant les substances conductrices de l’électricité, diriger et condenser la force électrique; et ces deux forces électrique et magnétique peuvent être également dispersées, changées, ou supprimées, à volonté. La force de l’électricité et celle du magnétisme peuvent de même se communiquer aux matières que l’on approche des corps dans lesquels on a excité ces forces.

Souvent, pendant l’orage, l’électricité des nuées a troublé la direction de l’aiguille de la boussole; et même l’action de la foudre aérienne a influé quelquefois sur le magnétisme au point de détruire et de changer tout à coup d’un pôle à l’autre la direction de l’aimant.

Une forte étincelle électrique et l’action du tonnerre paroissent également donner la vertu magnétique aux corps ferrugineux, et la vertu électrique aux substances que la nature a rendues propres à recevoir immédiatement l’électricité, telles que les verres et les résines. M. le chevalier de Rozières, capitaine au corps royal du génie, est parvenu à aimanter des barres d’acier, en tirant des étincelles par le bout opposé à celui qui recevoit l’électricité, sans employer les commotions plus ou moins fortes des grandes batteries électriques, et même sans en tirer des étincelles, et seulement en les électrisant pendant plusieurs heures de suite.

Des bâtons de soufre ou de résine qu’on laisse

1. Voyez la relation de Carteret dans le premier Voyage de Cook.
2. Cette dernière manière n’a été trouvée que nouvellement par
tomber, à plusieurs reprises, sur un corps dur, acquièrent la vertu électrique, de même que les barres de fer qu'on laisse tomber plusieurs fois de suite d'une certaine hauteur prennent du magnétisme par l'effet de leurs chutes réitérées.

On peut imprimer la vertu magnétique à une barre de fer, de telle sorte qu'elle présente une suite de pôles alternativement opposés. On peut également électriser une lame ou un tube de verre, de manière qu'on y remarque une suite de pôles alternativement opposés.

Lorsqu'une barre de fer s'aimante par sa seule proximité avec l'aimant, l'extrémité de cette barre qui en est la plus voisine acquiert un pôle opposé à celui que l'aimant lui présente. De même une barre de fer isolée peut recevoir deux électricités opposées par le voisinage d'un corps électrisé; le bout qui est le plus proche de ce corps jouit, comme dans l'aimant, d'une force opposée à celle dont il subit l'action.

Les matières ferrugineuses réduites en rouille, en ocre, et toutes les dissolutions du fer par l'acide aérien ou par les autres acides, ne peuvent recevoir la vertu magnétique; et de même ces matières ferrugineuses ne peuvent, dans cet état de dissolution, acquérir la vertu électrique.

M. le chevalier de Rozières, qui nous en a fait part par sa lettre du 3o avril 1787.

1. Voyez à ce sujet les expériences de M. Épinus, dans la dissertation que ce physicien a publiée à la tête de son ouvrage sur le magnétisme; et celles de M. le comte de Lacépède dans son Essai sur l'Électricité, tome I.
Si l'on suspend une lame de verre garnie à ses deux bouts de petites plaques de métal, dont l'une sera électrisée en plus, l'autre en moins, et si cette lame ainsi préparée peut se mouvoir librement lorsqu'on en approchera un corps électrique qui jouit aussi des deux électricités, la lame de verre présentera les mêmes phénomènes que l'aiguille aimantée présente auprès d'un aimant.

Les fortes étincelles électriques revivissent les chaux de fer, et leur rendent la propriété d'être attirées par l'aimant. Les foudres souterraines et aériennes revivissent de même, à l'intérieur et à la surface de la terre, une prodigieuse quantité de matières ferrugineuses, réduites en chaux par les éléments humides.

La plupart des schorls, et particulièrement la tourmaline, présentent des phénomènes électriques qui ont la plus grande analogie avec ceux de l'aimant. Lorsque ces matières ont été chauffées ou frottées, elles ont, pour ainsi dire, des parties polaires, dont les unes sont électrisées en plus et les autres en moins, et qui attirent ou repoussent les corps électrisés.

Les aurores polaires, qui, comme nous l'avons dit, ne sont que des lumières électriques, influent, plus qu'aucune autre affection de l'atmosphère, sur les variations de l'aiguille aimantée. Les observations de MM. Van-Swinden et de Cassini ne permettent plus de douter de ce fait.

Les personnes dont les nerfs sont délicats, et sur lesquelles l'électricité agit d'une manière si marquée, reçoivent aussi du magnétisme des impressions assez sensibles; car l'aimant peut, en certaines circonstances, suspendre et calmer les irritations nerveuses, et
apaiser les douleurs aiguës. L'action de l'aimant qui, dans ce cas, est calmante et même engourdissante, semble arrêter le cours et fixer pour un temps le mouvement trop rapide ou déréglé des torrents de ce fluide électrique qui, quand il est sans frein ou se trouve sans mesure dans le corps animal, en irrité les organes et l'agite par des mouvements convulsifs.

Il existe des animaux dans lesquels, indépendamment de l'électricité vitale qui appartient à tout être vivant, la nature a établi un organe particulier d'électricité, et, pour ainsi dire, un sens électrique et magnétique. La torpille¹, l'anguille électrique de Surinam, le trembleur du Niger², semblent réunir et concentrer dans une même faculté la force de l'électricité et celle du magnétisme. Ces poissons électriques et magnétiques engourdissent les corps vivants qui les touchent; et, suivant M. Schilling et quelques autres observateurs, ils perdent cette propriété lorsqu'on les touche eux-mêmes avec l'aimant. Il leur ôte la faculté d'engourdir, et on leur rend cette vertu en les touchant avec du fer, auquel se transporte le magnétisme qu'ils avaient reçu de l'aimant. Ces mêmes poissons électriques et magnétiques agissent sur

1. Dans l'ancienne médecine, on s'est servi de la torpille pour engourdir et calmer : Galien compare sa vertu à celle de l'opium pour calmer et assoupir les douleurs.

2. Il est bon d'observer que les espèces de poissons électriques diffèrent trop les unes des autres pour qu'on puisse rapporter leurs phénomènes à la conformité de leur organisation. On ne peut donc les attribuer qu'aux effets de l'électricité. Veyez un très bon mémoire de M. Broussonet, de l'Académie des Sciences, sur le trembleur et les autres poissons électriques, dans le Journal de Physique du mois d'août 1785.
l’aimant, et font varier l’aiguille de la boussole. Mais ce qui prouve évidemment la présence de l’électricité dans ces animaux, c’est qu’on voit paraître des étincelles électriques dans les intervalles que laissent les conducteurs métalliques avec lesquels on les touche. M. Walsh a fait cette expérience devant la Société royale de Londres, sur l’anguille de Surinam, dont la force électrique paraît être plus grande que celle de la torpille, dans laquelle cette action est peut-être trop faible pour produire des étincelles. Et ce qui démontre encore que la commotion produite par ces poissons n’est point un effet mécanique, comme l’ont pensé quelques physiciens, mais un phénomène électrique, c’est qu’elle se propage au travers des fluides, et se communique, par le moyen de l’eau, à plusieurs personnes à la fois.

Or ces étincelles, et cette commotion plus ou moins violente que font éprouver ces poissons, sont vraiment des effets de l’électricité, que l’on ne peut attribuer en aucune manière au simple magnétisme, puisque aucun aimant, tant naturel qu’artificiel, n’a fait éprouver de secousses sensibles, ni produit aucune étincelle. D’un autre côté, les commotions que donnent les torpilles, l’anguille électrique de Surinam, et le trembleur du Niger, étant très fortes, lorsque ces poissons sont dans l’eau des mers ou des grands fleuves, on peut d’autant moins la considérer comme un phénomène purement électrique, que les effets de l’électricité s’affaiblissent avec l’humidité de l’air qui la dissipe, et ne peuvent jamais être excités lorsqu’on mouille les machines qui la produisent. Les vases de verre électrisés, que l’on a appelés bouteilles
de Leyde, et par le moyen desquels on reçoit les secousses les plus fortes, se déchargent et perdent leur vertu dès le moment qu’ils sont entièrement plongés dans l’eau : cette eau, en faisant communiquer ensemble les deux surfaces intérieure et extérieure, rétablit l’équilibre, dont la rupture est la seule cause du mouvement, et par conséquent de la force du fluide électrique. Si l’on remarque donc des effets électriques dans les torpilles, l’on doit supposer, d’après les modifications de ces effets, que l’électricité n’y existe pas seule, et qu’elle y est réunie avec le magnétisme, de manière à y subir une combinaison qui augmente, diminue ou altère sa puissance ; et il paraît que ces deux forces électrique et magnétique, qui, lorsqu’elles sont séparées l’une de l’autre, sont plus ou moins actives, ou presque nulles, suivant l’état de l’atmosphère, le sont également lorsqu’elles sont combinées dans ces poissons ; mais peut-être aussi la diversité des saisons, ainsi que les différents états de ces animaux, influent-ils sur l’action de leurs forces électrique et magnétique. Plusieurs personnes ont en effet manié des torpilles sans en recevoir aucune secousse. M. le comte de Lacépède étant à La Rochelle, en octobre 1777, voulut éprouver la vertu de quelques torpilles que MM. de l’Académie de La Rochelle avaient fait pêcher ; elles étaient bien vivantes, et paraissaient très vigoureuses : cependant, de quelque manière qu’on les touchât, soit immédiatement avec la main, soit avec des barreaux de fer ou d’autres matières, et sur quelque partie de leur corps qu’on portât l’attouchement, dans l’eau ou hors de l’eau, aucun des assistants à l’expérience ne ressentit
la moindre commotion. Il paraît donc que ces poissons ne sont pas électriques dans tous les temps, et que cette propriété, qui n’est pas constante, dépend des circonstances, et peut-être de la saison ou du temps auxquels ces animaux doivent répandre leurs œufs et leur frai; et nous ne pouvons rien dire de la cause de ces alternatives d’action et d’inaction, faute d’observations assez suivies sur ces poissons singuliers.

Cette combinaison des deux forces électrique et magnétique, que la nature paraît avoir faite dans quelques êtres vivants, doit faire espérer que nous pourrons les réunir par l’art, et peut-être en tirer des secours efficaces dans certaines maladies, et particulièrement dans les affections nerveuses.

Les deux forces électrique et magnétique ont en effet été employées séparément, avec succès, pour la guérison ou le soulagement de plusieurs maux douloureux. Quelques physiciens, particulièrement M. Mauduit, de la Société royale de médecine, ont guéri des maladies par le moyen de l’électricité; et M. l’abbé Le Noble, qui s’occupe avec succès, depuis longtemps, des effets du magnétisme sur le corps humain, et qui est parvenu à construire des aimants artificiels beaucoup plus forts que tous ceux déjà connus, a employé très heureusement l’application de ces mêmes aimants pour le soulagement de plusieurs maux. Nous croyons devoir placer dans la note ci-après un extrait du Rapport fait par MM. les commissaires de la Société royale de médecine au sujet des travaux utiles de ce physicien, qui les continue avec

zèle, et d'une manière d'autant plus louable qu'il les consacre gratuitement au soulagement des malheureux.

1. Dans un compte rendu à la Société royale de médecine sur les effets de l'aimant, et au sujet des travaux de M. Le Noble, les commissaires s'expriment en ces termes.

"Les affections nerveuses nous ont paru céder et se dissiper d'une manière constante pendant l'usage de l'aimant, et au contraire les affections humorales n'ont éprouvé aucun changement par la plus forte et la plus longue application de l'aimant. Dans toutes les affections nerveuses, quelle que fût la nature des accidents dont elles étoient accomplies, soit qu'elles consistassent en des affections purement douloureuses, soit qu'elles parussent plus particulièrement spasmodiques et convulsives; quel que fût aussi leur siège et leur caractère, de quelque manière enfin que nous eussions employé l'aimant, soit en armure habituelle et constante, soit par la méthode des simples applications, toutes ces affections ont subi des changements plus ou moins marqués, quoique presque toujours le soulagement n'ait guère été qu'une simple palliation de la maladie. Ces affections nous ont paru céder et s'effailler d'une manière plus ou moins marquée pendant le traitement. Plusieurs malades, que le soulagement dont ils jouissoient depuis quelque temps avaient engagés à quitter leurs garnitures, ayant vu se renouveler ensuite leurs accidents, qu'une nouvelle application de l'aimant a toujours suffi pour faire disparaître, nous sommes restés convaincus que c'étoit à l'usage des aimants qu'on devait attribuer le soulagement obtenu.... Nous nous sommes scrupuleusement abstenus d'employer aucun autre remède pendant le traitement. De tous les secours qu'on peut désirer de voir joindre à l'usage de l'aimant, c'est de l'électricité surtout dont il semble qu'on ait lieu de plus attendre..... Le magnétisme intéresse le bien public; il nous paraît devoir mériter toute l'attention de la société. Qu'on nous permette à ce sujet une réflexion. De tous les objets sur lesquels l'enthousiasme peut s'exciter, et dont le charlatanisme peut par cette raison abuser avec plus de confiance, le magnétisme paroit être celui qui offre à l'avidité plus de facilités et plus de ressources. L'histoire seule de cet art suffiroit pour en convaincre, quand des essais qui le multiplient sous nos yeux n'autoriseroient pas cette présomption. C'est surtout sur de parcelliers objets, devenus pour le public un sujet de curiosité, qu'il est à désirer que les compagnies savantes portent toute
Nous avons cru devoir y placer aussi quelques détails relatifs aux divers succès que M. l'abbé Le Noble a leur attention, pour arracher à l'erreur une confiance qu'elle ne manquerait pas de gagner si l'on ne dissipoit aux yeux des gens crédules les prestiges du charlatanisme, par des essais faits avec exactitude et impartialité. De pareils projets, pour être remplis d'une manière utile, ont besoin de l'appui du gouvernement ; mais où les secours peuvent-ils mieux être appliqués qu'aux objets qui touchent aux progrès des sciences et au bien de l'humanité?

En désirant que le gouvernement autorise la Société à annoncer sous ses auspices un traitement gratuit et public par le magnétisme, nous croyons encore utile que la compagnie, invite ceux de ses associés et correspondants à qui ces sortes d'essais peuvent être agréables, à concourir avec elle au succès de ses recherches. La Société sait, par l'exemple de l'électricité, combien elle peut retirer d'avantages de cette réunion de travaux. Le magnétisme offre encore plus de facilités pour répéter ou multiplier les essais que l'on jugerait nécessaires. Mais pour rendre ce concours de recherches plus fructueux, on sent qu'il est nécessaire qu'il soit dirigé sur un plan uniforme. Le rapport que nous soumettons ici à l'examen de la compagnie remplit cette vue, et nous lui proposons de le faire imprimer et distribuer par la voie de sa correspondance ordinaire.

La Société, pour se livrer elle-même à ses travaux, devant s'attacher un physicien exercé dans la préparation des aimants, et versé dans tous les genres de connoissances relatives à leur administration, nous pensons que le choix de la compagnie doit tomber sur M. l'abbé Le Noble. Plusieurs raisons nous paraissent devoir lui mériter la préférence. On doit le regarder comme un des premiers physiciens qui, depuis le renouvellement des expériences de l'aïmant, se soient occupés de cet objet. En 1765, c'est-à-dire deux ans à peu près avant M. Klarich, que l'on regarde comme le principal rénovateur de ces essais, et dont les observations ont fait attribuer à l'Angleterre la gloire de cette découverte, les aimants de M. l'abbé Le Noble pour les dents paroissent avoir été connus dans la capitale et recherchés des physiciens. Au mois de juin 1766, dans le même temps que M. Darquier, qu'on regarde comme le premier qui ait répété en France les essais de M. Klarich dans les mâts de dents, M. l'abbé Le Noble publia en ce genre plusieurs observations. Deux ans avant que le P. Hell, à Vienne, fit adopter généralement la méthode des armures magnétiques, il avait
obtenus depuis la publication du Rapport de MM. de la Société royale, et qu'il nous a communiqués lui-même.

annoncé plusieurs espèces de plaques aimantées préparées pour être portées habituellement sur différentes parties du corps. Depuis ces différentes époques, M. l'abbé Le Noble n'a cessé de s'occuper de l'usage de l'aimant dans plusieurs espèces d'affections nerveuses. Les résultats qu'il a obtenu de ces essais sont consignés dans un mémoire qu'il lut au mois de septembre 1777 dans une des séances de la Société. Enfin, pour compléter l'histoire de ses travaux, on doit y joindre les différents essais auxquels ont donné lieu nos propres observations, et dont nous reconnaissons qu'il doit, s'il en résulte quelque utilité, partager avec nous le mérite. A ce sujet, nous devons rendre compte à la compagnie du zèle avec lequel M. l'abbé Le Noble s'est porté à nous secourir dans nos recherches. Quoique la durée de ses essais, et sa résidence ordinaire en province, aient exigé de lui de fréquents voyages et de longs séjours à Paris, quoique la multiplicité des maladies qui ont en recours à l'aimant, le peu d'aisance du plus grand nombre, la durée du long traitement pendant lequel les armures ont dû être souvent renouvelées, aient été autant de charges, d'incommodités et de sujets de dépense pour M. l'abbé Le Noble, nous devons annoncer qu'il n'ait épargné, ni soins, ni peines, ni sacrifices, pour concourir, autant qu'il eût en lui, au succès de nos épreuves et au soulagement des malheureux. M. l'abbé Le Noble se montre encore animé des mêmes dispositions, et prêt à les mettre en œuvre, si les circonstances répondent à ses désirs. Mais, attaché par la nature de ses devoirs à la place qu'il remplit en province, il ne pourrait concourir d'une matière utile aux expériences que nous proposons, s'il n'eût été fixé à Paris. C'est au gouvernement seul qu'il appartient de lever cet obstacle, et nous pensons que la compagnie doit renouveler en sa faveur les mêmes instances qu'elle a déjà faites en 1778, pour lui obtenir une résidence fixe dans la capitale.

» Des raisons particulières et personnelles à M. Le Noble nous paraissent devoir lui mériter cette faveur du gouvernement. C'est sur tout en employant de forts aimants, portés au plus haut degré de force, et préparés de manière à former une machine semblable à celle de l'électricité, qu'on doit attendre de nouveaux avantages du magnétisme. M. l'abbé Le Noble possède en ce genre des procédés très supérieurs à tous ceux qui nous ont été connus, et employés jusqu'ici par les physiciens. Nous apportons en preuve de ce que nous avan-
Les premiers physiciens qui ont voulu rechercher les rapports analogues des forces magnétique et électriques, ont souhaité un certificat de l'Académie royale des Sciences, à laquelle M. l'abbé Le Noble a présenté des aimants capables de soutenir des poids de plus de deux cents livres, et qui lui ont mérité les éloges et l'approbation de cette compagnie. C'est avec des aimants de ce genre qu'on a lieu de se flatter d'obtenir du magnétisme des effets extraordinaires et inconnus.

M. l'abbé Le Noble nous a communiqué les détails suivants, relatifs aux diverses applications qu'il a faites de l'aimant dans les maladies, depuis la publication du Rapport de la Société royale de médecine.

En 1786, le 24 mai, à cinq heures du soir, une plaque d'aimant envoyée par M. l'abbé Le Noble fut appliquée sur l'estomac à une malade âgée de cinquante-un ans, et qui, depuis l'âge de vingt-deux, éprouvait de temps en temps des attaques de nerfs plus ou moins fréquentes, qui étoient venues à la suite d'une suppression, et étoient accompagnées de convulsions très fortes et d'autres symptômes effrayants. Ces attaques avoient disparu quelquefois près d'un an; elles avoient été aussi suspendues par différents remèdes. Pendant les divers intervalles qui avoient séparé le temps où les attaques étoient plus ou moins fréquentes, la personne qui les avoit éprouvées avoit joui d'une bonne santé; mais depuis quinze mois elle étoit retombée dans son premier état. Sur la fin même, les accidents avoient plus de dix ou douze fois par jour, et quelquefois duré plusieurs minutes. Depuis dix-huit mois les évacuations périodiques étoient dérangées, et n'avoient lieu que de deux mois en deux mois.

L'effet de l'aimant fut très prompt : la malade n'eut plus de convulsions, quoique dans la matinée et dans l'après-midi elle en eût éprouvé plus de vingt fois. Le 16 juin les convulsions n'étoient point encore revenues : la malade se portoit mieux; elle sentoit ses forces et son appétit augmenter de jour en jour; elle dormoit un peu mieux pendant la nuit, et s'occupoit continuellement, pendant le jour, des travaux pénibles de la campagne sans en être incommodée: elle sen-toit cependant toujours un petit tiraillement dans l'intérieur du front. Elle rendoit quelquefois des vents comme auparavant; sa respiration étoit un peu gênée lorsqu'ils s'effrayaient, mais n'avait jamais été suspendue depuis l'application de l'aimant, ainsi que cela avoit très souvent auparavant.

Ces faits ont été attestés par le curé du lieu; et il est à croire que le
trique essayèrent de rapporter l'électricité, qu'on venoit, en quelque sorte, de découvrir, au magné-

bien-être s'est soutenu, puisque la malade n'a point demandé de nou-
veaux secours.

Une dame qui souffrait beaucoup des nerfs, presque dans tout le corps, et dont la santé étoit si dérangée qu'elle n'osoit point tenter les remèdes intérieurs, s'est trouvée soulagée par le moyen d'un collier d'aimant et l'application d'un aimant sur le creux de l'estomac, ainsi qu'elle l'a écrit elle-même à M. l'abbé Le Noble.

Une malade souffrait depuis six mois des maux de nerfs qui lui don-
noient des maux de gorge et d'estomac au point que très souvent l'oeso-
phage se fermoit presque entièrement, et la mettait dans une impossi-
bilité presque absolue d'avaler même les liquides pendant à peu près la moitié de la journée ; une fièvre épidémique s'étoit jointe aux acci-
dents nerveux. On lui appliqua un collier et une ceinture d'aimant, suivant la méthode de M. l'abbé Le Noble. Huit ou dix heures après,
la malade se trouva comme guérie, et se porta passablement bien pen-
dant trois mois, au bout desquels le médecin qui l'avait traitée certifia à M. l'abbé Le Noble la maladie et la guérison. Ce même médecin pen-
soit que les nerfs de cette dame avoient été agacés par une humeur.

Une jeune demoiselle ayant eu pendant plus de trois ans des atta-
ques d'épilepsie qui avoient commencé à l'époque où les évacuations ont lieu, et ayant fait inutilement plusieurs remèdes conseillés par un membre de la Société royale de Médecine, eut recours aux aimants de M. l'abbé Le Noble, d'après l'avis du même médecin : les attaques cessèrent bientôt, et, dix mois après leur cessation, sa mère écrivit au médecin qui lui avoit conseillé les aimants de M. l'abbé Le Noble, pour lui annoncer la guérison de sa fille.

Une dame souffroit depuis plus de huit ans des maux de nerfs qui avoient été souvent accompagnés d'accidents graves et fâcheux, de lassitudes, d'insomnies, de douleurs vives, de convulsions, d'évanouis-
sements, et surtout d'un accablement général et d'une grande tris-
tesse. Les aimants de M. l'abbé Le Noble l'ont guérie, et elle l'a attesté elle-même, un mois ou environ après, à M. l'abbé Le Noble. Sa gué-
rison s'étoit toujours soutenue.

Une dame qui étoit malade d'une épilepsie survenue à la suite d'une frayeur qu'elle avoit eue dans un temps critique a certifié que, de-
puis quatre ans qu'elle porte des aimants de M. Le Noble, elle a tou-
jours été soulagée ; que si divers événements lui ont donné quelquefois
tisme, dont on connoissoit depuis long-temps les
des crises, elles ont été passagères, et bien moins violentes que celles
qu'elle avoit éprouvées, et qu'elle jouit habituellement d'un bien-être
très marqué.

Trois femmes et un homme ont été guéris, par l'application de l'ai-
ment, de maux de nerfs accompagnés de convulsions fortes, etc. Trois
ans se sont éculés depuis la guérison d'une de ces femmes, et elle
se porte encore très bien.

M. Picot, médecin de la maison du roi de Sardaigne, a certifié à
M. l'abbé Le Noble qu'il s'étoit servi de ses aimants avec le plus grand
succès pour procurer à une femme très délicate, et d'une très grande
sensibilité, des évacuations périodiques dérangées ou supprimées en
partie depuis plus de deux ans. Le même médecin atteste avoir été
guéri lui-même d'une migraine qui avoit résisté, pendant plus de huit
ans, à tous les secours de l'art. Il demarde en conséquence à M. Le
Noble qu'il établisse un dépôt de ses aimants dans la ville de Turin.

Depuis plus de dix-huit mois une dame ne pouvait prendre la plus
légère nourriture sans que son estomac fût extrêmement fatigué. Elle
ressentoit des douleurs presque continuelles, tantôt dans le côté droit,
tantôt entre les deux épaules, et souvent dans la poitrine : elle éprou-
voit tous les soirs, sur la fin de sa digestion, un étouffement subit,
une tension générale, une inquiétude qui la forçoit à cesser toute oc-
cupation, à marcher, à aller à l'air, quelque froid qu'il fit, et à relâ-
cher tous les cordons de son habit. Quinze jours après avoir employé
les aimants de M. l'abbé Le Noble elle fut entièrement guérie, et au-
cune douleur ni aucun accident n'étoient revenus six semaines après
qu'elle eut commencé à les porter, ainsi qu'elle l'attesta elle-même à
M. l'abbé Le Noble.

Une dame a certifié elle-même qu'elle avoit souffert, pendant six
jours, des douleurs très vives occasionnées par un rhumatisme au bras
gauche, dont elle avoit entièrement perdu l'usage ; qu'elle avoit em-
ployé sans succès les remèdes ordinaires ; qu'elle avoit eu recours aux
plaques aimantées de M. l'abbé Le Noble, et que quatre jours après
elle avoit été entièrement guérie.

Un homme très digne de foi a aussi certifié à M. l'abbé Le Noble
qu'il avoit été guéri par l'application de ses aimants d'un rhumatisme
très douloureux, dont il souffroit depuis plusieurs années, et dont le
siège étoit au bas de l'épine du dos. Près d'un an après, cet homme
portoit toujours sur le bas du dos la plaque aimantée ; les douleurs
grands phénomènes. Des physiciens récents ont,

avoient disparu, et il ne sentoit plus que quelquefois un peu d'engourdissement lorsqu'il avoit été sédentaire pendant trop long-temps; mais il dissipoit cet engourdissement en faisant quelques pas dans sa chambre.

Un homme malade d'une paralysie incomplète, souffrant dans toutes les parties du corps, et ayant tenté inutilement tous les remèdes connus, fut adressé, dans le mois de septembre 1785, à M. l'abbé Le Noble par un membre de la Société de Médecine; on lui appliqua les aimants, et au mois de janvier 1786 il s'est très bien porté.

Une dame qui souffroit depuis vingt ans des douleurs rhumatismales qui l'empêchent de dormir et de marcher étoit presque entièrement guérie au mois de février 1787.

Le nommé Boissel, garçon menuisier, âgé de cinquante ans, a eu recours à M. l'abbé Le Noble le 9 novembre 1786. Il y avoit dix mois qu'il éprouvoit de grandes douleurs dans les deux bras; le gauche étoit très enflé et enflammé, il lui étoit impossible de l'étendre, et la douleur se communiquoit à la poitrine, à l'estomac et aux côtes, et même jusqu'aux jambes, dont il ne pouvoit faire usage qu'à l'aide d'une béquille; ou étoit obligé de le porter dans son lit, où il ressentoit encore les mêmes douleurs. Il avoit été trois mois à l'Hôtel-Dieu, et il y en avoit deux qu'il en étoit sorti sans y avoir éprouvé le plus léger soulagement. Mais après l'application des aimants de M. l'abbé Le Noble, le 9 novembre, les mouvements dans les jambes, ainsi que dans les bras, sont devenus libres; le 19 dudit mois il se promenoit dans sa chambre, et, voyant la facilité avec laquelle il marchoit, il crut qu'il pourrait sortir sans aucun risque.

En effet, il a été ce jour-là à quelque distance de son domicile, et le lendemain il est venu de la rue Neuve-Saint-Martin, où il demeure, à la rue Saint-Thomas-du-Louvre. Les douleurs étoient encore vives dans les jambes, quoique les mouvements fussent libres; mais elles se sont dissipées par degrés, et ont cessé le 15 février. Il s'est établi sous les aimants, à la cheville des pieds et sous les jarretières, des espèces de petits cauterès qui rendoient une hameure épaisse et gluante. Les jambes, qui étoient considérablement enflées, sont maintenant, au mois de mars 1787, dans l'état naturel; il marche très bien et jouit d'une bonne santé.

1. Le P. Bérault, jésuite, auteur d'une dissertation couronnée par l'Académie de Bordeaux, a soupçonné le premier que les forces magnétique et électrique pouvoient être identiques.
avec plus de fondement, attribué ce même magnétisme à l'électricité, qu'ils connoissoient mieux; mais ni les uns ni les autres n'ont fait assez d'attention aux différences de l'action de ces deux forces, dont nous venons d'exposer les relations analogues, et qui néanmoins diffèrent par plusieurs rapports, et notamment par les directions particulières que ces forces suivent, ou qu'elles prennent d'elles-mêmes: car la direction du magnétisme se combine avec le gisement des continents, et se détermine par la position particulière des mines de fer et d'aimant, des chaînes de laves, de basaltes, et de toutes les matières ferrugineuses qui ont subi l'action du feu; et c'est par cette raison que la force magnétique a autant de différentes directions qu'il y a de pôles magnétiques sur le globe, au lieu que la direction de l'électricité ne varie point, et se porte constamment de l'équateur aux deux pôles terrestres. Les glaces, qui recouvrent les régions polaires des deux hémisphères du globe, doivent déterminer puissamment le fluide électrique vers ces régions polaires, où il manque, et vers lesquelles il doit se porter, pour obéir aux lois générales de l'équilibre des fluides, au lieu que la glace n'influence pas sur le magnétisme, qui ne reçoit d'inflexions que par son rapport particulier avec les masses de l'aimant et du fer.

De plus, il n'y a des rapports semblables et bien marqués qu'entre les aimants et les corps électriques par eux-mêmes, et l'on ne connaît point de substances sur lesquelles le magnétisme produise des effets pareils à ceux que l'électricité produit sur les substances qui ne peuvent être électrisées que par communication.
D’ailleurs le magnétisme ne se communique pas de la même manière que l’électricité dans beaucoup de circonstances, puisque la communication du magnétisme ne diminue pas la force des aimants, tandis que la communication de l’électricité détruit la vertu des corps qui la produisent.

On peut donc dire que tous les effets magnétiques ont leurs analogues dans les phénomènes de l’électricité : mais on doit convenir, en même temps, que tous les phénomènes électriques n’ont pas de même tous leurs analogues dans les effets magnétiques. Ainsi nous ne pouvons plus douter que la force particulière du magnétisme ne dépende de la force générale de l’électricité, et que tous les effets de l’aimant ne soient des modifications de cette force électrique. Et ne pouvons-nous pas considérer l’aimant comme un corps perpétuellement électrique, quoiqu’il ne possède l’électricité que d’une manière particulière, à laquelle on a donné le nom de magnétisme? La nature des matières ferrugineuses, par son affinité avec la substance du feu, est assez puissante pour fléchir la direction du cours de l’électricité générale, et même pour en ralentir le mouvement, en le déterminant vers la surface de l’aimant. La lenteur de l’action magnétique, en comparaison de la violente rapidité des chocs élect-

1. Notre opinion est confirmée par les preuves répandues dans une dissertation de M. Épinus, lue à l'Académie de Saint-Pétersbourg : ce physicien y a fait voir que les effets de l’électricité et du magnétisme non seulement ont du rapport dans quelques points, mais qu’ils sont encore semblables dans un très grand nombre de circonstances des plus essentielles; en sorte, dit-il, qu’il n’est presque pas à douter que la nature n’emploie à peu près les mêmes moyens pour produire l’une et l’autre force.
triques, nous représente en effet un fluide qui, tout actif qu’il est, semble néanmoins être ralenti, suspendu, et pour ainsi dire assoupi dans son cours.

Ainsi, je le répète, les principaux effets du magnétisme se rapprochent, par une analogie marquée, de ceux de l’électricité, et le grand rapport de la direction générale et commune des forces électrique et magnétique, de l’équateur aux deux pôles, les réunit encore de plus près, et semble même les identifier 1.

Si la vertu magnétique étoit une force résidante dans le fer ou dans l’aimant, et qui leur fût inhérente et propre, on ne pourroit la trouver ou la prendre que dans l’aimant même, ou dans le fer actuellement aimanté; et il ne seroit pas possible de l’exciter ou de la produire par un autre moyen: mais la percussion, le frottement, et même la seule exposition aux impressions de l’atmosphère, suffisent pour donner au fer

1. M. le comte de Tressan a pensé, comme nous, que le magnétisme n’étoit qu’une modification de l’électricité. Voyez son ouvrage qui a pour titre Essais sur le fluide électrique considéré comme agent universel; mais notre théorie n’en diffère pas moins de son opinion. L’hypothèse de ce physicien est ingénieuse, suppose beaucoup de connaissances et de recherches; il présente des expériences intéressantes, de bonnes vues, et des vérités importantes: mais cependant on ne peut admettre sa théorie. Elle consiste principalement à expliquer le mécanisme de l’univers, et tous les effets de l’attraction, par le moyen du fluide électrique. Mais l’action impulsive d’aucun fluide ne peut exister que par le moyen de l’élasticité, et l’élasticité n’est elle-même qu’un effet de l’attraction, ainsi que nous l’avons ci-devant démontré. On ne fera donc que reculer la question, au lieu de la résoudre, toutes les fois qu’on voudra expliquer l’attraction par l’impulsion, dont les phénomènes sont tous dépendants de la gravitation universelle. On peut consulter à ce sujet l’article intitulé de l’Attraction, du premier volume de la Physique générale et particulière de M. le comte de La-cépède.
cette vertu magnétique ; preuve évidente qu'elle dépend d'une force extérieure qui s'applique ou plutôt flotte à sa surface et se renouvelle sans cesse.

En considérant les phénomènes de la direction de l'aimant, on voit que les forces qui produisent et maintiennent cette direction se portent généralement de l'équateur aux pôles terrestres, avec des variations dont les unes ne sont qu'alternatives d'un jour à l'autre, et s'opèrent par des oscillations momentanées et passagères, produites par les variations de l'état de l'air, soit par la chaleur ou le froid, soit par les vents, les orages, les aurores boréales ; les autres sont des variations en déclinaison et en inclinaison, dont les causes, quoique également accidentelles, sont plus constantes, et dont les effets ne s'opèrent qu'en beaucoup plus de temps ; et tous ces effets sont subordonnés à la cause générale, qui détermine la direction de la force électrique de l'équateur vers les pôles.

En examinant attentivement les inflexions que la direction générale de l'électricité et du magnétisme éprouve de toutes ces causes particulières, on reconnaît, d'après les observations récentes et anciennes, que les grandes variations du magnétisme ont une marche progressive du nord à l'est ou à l'ouest, dans certaines périodes de temps, et que la force magnétique a, dans sa direction, différents points de tendance ou de détermination, que l'on doit regarder comme autant de pôles magnétiques vers lesquels, selon le plus ou moins de proximité, se fléchit la direction de la force générale, qui tend de l'équateur aux deux pôles du globe.

Ce mouvement en déclinaison ne s'opère que len-
 ET DE SES USAGES.

tement; et cette déclinaison paroissant être assez con-
stante pendant quelques années, on peut regarder les
observations faites depuis douze à quinze ans comme
autant de déterminations assez justes de la position des
lieux où elles ont été faites.

On doit réunir aux phénomènes de la déclinaison
de l’aimant ceux de son inclinaison; ils nous démon-
trent que la force magnétique prend, à mesure que
l’on approche des pôles, une tendance de plus en plus
approchante de la perpendiculaire à la surface du
globe; et cette inclinaison, quoique un peu modifiée
par la proximité des pôles magnétiques, qui déter-
mine la déclinaison, nous paraîtra cependant beau-
coup moins irrégulière dans sa marche progressive
vers les pôles terrestres, et plus constante, que la
déclinaison dans les mêmes lieux, en différents temps.

Pour se former une idée nette de cette inclinaison
de l’aimant, il faut se représenter la figure de la terre
renflée sous l’équateur et abaissée sous les pôles; ce
qui fait une courbure dont les degrés ne sont point
tous égaux, comme ceux d’une sphère parfaite. Il
faut en même temps concevoir que le mouvement
qui tend de l’équateur aux pôles doit suivre cette
courbure, et que par conséquent sa direction n’est
pas simplement horizontale, mais toujours inclinée de
plus en plus, en partant de l’équateur pour arriver
aux pôles.

Cette inclinaison de l’aimant, ou de l’aiguille ai-
mantée, démontre donc évidemment que la force
qui produit ce mouvement suit la courbure de la
surface du globe, de l’équateur dont elle part, jus-
qu’aux pôles où elle arrive; si l’inclinaison de l’ai-
guille n'étoit pas dérangée par l'action des pôles magnétiques, elle seroit donc toujours très petite ou nulle dans les régions voisines de l'équateur, et très grande ou complète, c'est-à-dire de 90 degrés, dans les parties polaires.

En recherchant quel peut être le nombre des pôles magnétiques actuellement existants sur le globe, nous trouverons qu'il doit y en avoir deux dans chaque hémisphère; et, de fait, les observations des navigateurs prouvent qu'il y a sur la surface du globe trois espaces plus ou moins étendus, trois bandes plus ou moins larges, dans lesquelles l'aiguille aimantée se dirige vers le nord, sans décliner d'aucun côté. Or une bande sans déclinaison ne peut exister que dans deux circonstances : la première, lorsque cette bande suit la direction du pôle magnétique au pôle terrestre; la seconde, lorsque cette bande se trouve à une distance de deux ou de plusieurs pôles magnétiques, telle que les forces de ces pôles se compensent et se détruisent mutuellement : car, dans ces deux cas, le courant magnétique ne peut que suivre le courant général du fluide électrique et se diriger vers le pôle terrestre, et l'aiguille aimantée ne déclinera dès lors d'aucun côté. D'après cette considération, on pourra voir aisément, en jetant les yeux sur un globe terrestre, qu'un pôle magnétique ne peut produire dans un hémisphère que deux bandes sans déclinaison, séparées l'une de l'autre par la moitié de la circonférence du globe. S'il y a deux pôles magnétiques, l'on pourra observer quatre bandes sans déclinaison, chaque pôle pouvant en produire deux par son action particulière : mais alors ces quatre bandes ne seront pas placées sur
la même ligne que les pôles magnétiques et le pôle de la terre; elles seront aux endroits où les puissances des deux pôles magnétiques seront combinées avec leurs distances, de manière à se détruire. Ainsi une et deux bandes sans déclinaison ne supposent qu'un seul pôle magnétique; trois et quatre bandes sans déclinaison en supposent deux; et s'il se trouvait sur le globe cinq ou six bandes sans déclinaison, elles indiqueroient trois pôles magnétiques dans chaque hémisphère. Mais jusqu'à ce jour l'on n'a reconnu que trois bandes sans déclinaison, lesquelles s'étendent toutes trois dans les deux hémisphères: nous sommes par conséquent fondés à n'admettre aujourd'hui que deux pôles magnétiques dans l'hémisphère boréal et deux autres dans l'hémisphère austral; et si l'on connoissoit exactement la position et le nombre de ces pôles magnétiques, on pourroit bientôt parvenir à se guider sur les mers sans erreur.

On a tort de dire que les hommes donnent trop à la vaine curiosité; c'est aux besoins, à la nécessité, que les sciences et les arts doivent leur naissance et leurs progrès. Pourquoi trouvons-nous les observations magnétiques si multipliées sur les mers et en si petit nombre sur les continents? C'est que ces observations ne sont pas nécessaires pour voyager sur terre, mais que les navigateurs ne peuvent s'en passer. Néanmoins il seroit très utile de les multiplier sur terre; ce qui d'ailleurs seroit plus facile que sur mer. Sans ce travail, auquel on doit inviter les physiciens de tous pays, on ne pourra jamais former une théorie complète sur les grandes variations de l'aiguille aimantée, ni par conséquent établir une pratique certaine
et précise sur l'usage que les marins peuvent faire de leurs différentes boussoles.

Les effets du magnétisme se manifestent ou du moins peuvent se reconnaître dans toutes les parties du globe, et partout où l'on veut les exciter ou les produire. La force électrique, toujours présente, semble n'attendre pour agir et pour produire la vertu magnétique que d'y être déterminée par la combinaison des moyens de l'art, ou par les combinaisons plus grandes de la nature; et, malgré ses variations, le magnétisme est encore assujetti à la loi générale qui porte et dirige la marche du fluide électrique vers les pôles de la terre.

Si les forces magnétique et électrique étoient simples, comme celle de la gravitation, elles ne produiroient aucun mouvement composé; la direction en seroit toujours droite, sans déclinaison ni inclinaison, et tous les effets en seroient aussi constants qu'ils sont variables.

L'attraction, la répulsion de l'aimant, son mouvement tant en déclinaison qu'en inclinaison, démontrent donc que l'effet de cette force magnétique est un mouvement composé, une impulsion différemment dirigée; et cette force magnétique agissant, tantôt en plus, tantôt en moins, comme la force électrique, et se dirigeant de même de l'équateur aux deux pôles, pouvons-nous douter que le magnétisme ne soit une modification, une affection particulière de l'électricité, sans laquelle il n'existeroit pas?

Les effets de cette force magnétique étant moins généraux que ceux de l'électricité peuvent montrer plus aisément la direction de cette force électrique.
Cette direction vers les pôles nous est démontrée en effet par celle de l’aiguille aimantée, qui s’incline de plus en plus, et en sens contraire, vers les pôles terrestres. Et ce qui prouve encore que le magnétisme n’est qu’un effet de cette force électrique, qui s’étend de l’équateur aux pôles, c’est que des barres de fer ou d’acier placées dans la direction de ce grand courant acquièrent avec le temps une vertu magnétique plus ou moins sensible, qu’elles n’obtiennent qu’avec peine et qu’elles ne reçoivent même en aucune manière, lorsqu’elles sont situées dans un plan trop éloigné de la direction, tant en déclinaison qu’en inclinaison, du grand courant électrique. Ce courant général, qui part de l’équateur pour se rendre aux pôles, est souvent trouble par des courants particuliers, dépendants de causes locales et accidentelles. Lorsque, par exemple, le fluide électrique a été accumulé par diverses circonstances dans certaines portions de l’intérieur du globe, il se porte avec plus ou moins de violence de ces parties où il abonde vers les endroits où il manque. Il produit ainsi des foudres souterraines, des commotions plus ou moins fortes, des tremblements de terre plus ou moins étendus. Il se forme alors, non seulement dans l’intérieur, mais même à la surface des terrains remués par ces secousses, un courant électrique qui suit la même direction que la commotion souterraine, et cette force accidentelle se manifeste par la vertu magnétique que reçoivent des barres de fer ou d’acier placées dans le même sens que ce courant passager et local. L’action de cette force particulière peut être non seulement égale, mais même supérieure à celle de l’électricité.
générale, qui va de l'équateur aux pôles. Si l'on place en effet des barres de fer, les unes dans le sens du courant général de l'équateur aux pôles, et les autres dans la direction du courant particulier dépendant de l'accumulation du fluide électrique dans l'intérieur du globe, et qui produit le tremblement de terre, ce dernier courant, dont l'effet est cependant instantané et ne doit guère durer plus long-temps que les foudres souterraines qui le produisent, donne la vertu magnétique aux barres qui se trouvent dans sa direction, quelque angle qu'elles fassent avec le méridien magnétique, tandis que des barres entièrement semblables, et situées depuis un très long-temps dans le sens de ce méridien, ne présentent aucun signe de la plus foible aimantation. Ce dernier fait, qui est important, démontre le rapport immédiat du magnétisme et de l'électricité, et prouve en même temps que le fluide électrique est non seulement la cause de la plupart des tremblements de terre, mais qu'il produit aussi l'aimantation de toutes les matières ferrugineuses sur lesquelles il exerce son action.

Rassemblant donc tous les rapports entre les phénomènes, toutes les convenances entre les principaux effets du magnétisme et de l'électricité, il me semble qu'on ne peut pas se refuser à croire qu'ils sont produits par une seule et même cause, et je suis persuadé que, si on réfléchit sur la théorie que je viens d'exposer, on en reconnaîtra clairement l'identité. Simplifier les causes, et généraliser les effets, doit être le but du physicien; et c'est aussi tout ce que peut

1. Ces faits on été mis hors de doute par des expériences qui ont été faites par M. de Rozières, capitaine au corps royal du génie.
le génie aidé de l'expérience et guidé par les observations.

Or nous sommes aujourd'hui bien assurés que le globe terrestre a une chaleur qui lui est propre, et qui s'exhale incessamment par des émanations perpendiculaires à sa surface; nous savons que ces émanations sont constantes, très abondantes dans les régions voisines de l'équateur, et presque nulles dans les climats froids. Ne doivent-elles pas dès lors se porter de l'équateur aux deux pôles par des courants opposés? et comme l'hémisphère austral est plus refroidi que le boréal, qu'il présente à sa surface une plus grande étendue de plages glacées, et qu'il est exposé pendant quelques jours de moins à l'action du soleil 1, les émanations de la chaleur qui forment les courants électrique et magnétique doivent s'y porter en plus grande quantité que dans l'hémisphère boréal. Les pôles magnétiques boréaux du globe sont dès lors moins puissants que les pôles magnétiques austraux. C'est l'opposé de ce qu'on observe dans les aimants, tant naturels qu'artificiels, dont le pôle boréal est plus fort que le pôle austral, ainsi que nous le prouverons dans les articles suivants; et comme c'est un effet constant du magnétisme, que les pôles semblables se repoussent et que les pôles différents s'attirent, il n'est point surprenant que, dans quelque hémisphère qu'on transporte l'aiguille aimantée, son pôle nord se dirige vers le pôle boréal du globe, dont il diffère par la quantité de sa force, quoiqu'il porte le même nom, et qu'également son pôle sud se tourne tou-

jours vers le pôle austral de la terre, dont la force diffère aussi, par sa quantité, de celle du pôle austral de l'aiguille aimantée. L'on verra donc aisément comment, par une suite de l'inégalité des deux courants électriques, l'aiguille aimantée qui marque les déclinaisons se tourne toujours vers le pôle nord du globe, dans quelque hémisphère qu'elle soit placée, tandis qu'au contraire l'aiguille qui marque l'inclinaison de l'aimant s'incline vers le nord dans l'hémisphère boréal, et vers le pôle sud dans l'hémisphère austral, pour obéir à la force générale, qui va de l'équateur aux deux pôles terrestres en suivant la courbure du globe, de même que les particules de limaille de fer répandues sur un aimant s'inclinent vers l'un ou l'autre des deux pôles de cet aimant, suivant qu'elles en sont plus voisines, ou que l'un des pôles a plus de supériorité sur l'autre. Ces phénomènes, dont l'explication a toujours paru difficile, sont de nouvelles preuves de notre théorie, et montrent sa liaison avec les grands faits de l'histoire du globe.

Voilà donc les deux phénomènes de la direction aux pôles et de l'inclinaison à l'horizon ramenés à une cause simple, dont les effets seraient toujours les mêmes si tous les êtres organisés et toutes les matières brutes recevaient également les influences de cette force : mais, dans les êtres vivants, la quantité de l'électricité qu'ils possèdent, ou qu'ils peuvent recevoir, est relative à leur organisation, et il s'en trouve qui, comme la torpille, non seulement la reçoivent, mais semblent l'attirer, au point de former une sphère particulière d'électricité combinée avec la vertu magnétique, comme aussi, dans les matières brutes, le
fer se fait une sphère particulière d'électricité, à laquelle on a donné le nom de magnétisme; et enfin s'il existoit des corps aussi électriques que la torpille, et en assez grande quantité pour former de grandes masses, aussi considérables que celles des mines de fer en différents endroits du globe, n'est-il pas plus que probable que le cours de l'électricité générale se fléchiroit vers ces masses électriques comme elle se fléchit vers les grandes masses ferrugineuses qui sont à la surface du globe, et qu'elles produiroient les inflexions de cette force électrique ou magnétique en la déterminant à se porter vers ces sphères particulières d'attraction comme vers autant de pôles électriques plus ou moins éloignés des pôles terrestres, selon le gisement des continents et la situation de ces masses électriques?

Et comme la situation des pôles magnétiques peut changer et change réellement, tant par les travaux de l'homme, lesquels peuvent enfourir ou découvrir les matières ferrugineuses, que par les grands mouvements de la nature dans les tremblements de terre et dans la production des basaltes et des laves, qui tous sont magnétiques, on ne doit pas être si fort émerveillé du mouvement de l'aiguille aimantée vers l'ouest ou vers l'est; car sa direction doit varier et changer selon qu'il se forme de nouvelles chaines de basaltes et de laves, et qu'il se découvre de nouvelles mines dont l'action favorise ou contrarie celle des mines plus anciennes.

Par exemple, la déclinaison de l'aiguille à Paris étoit, en 1580, de onze degrés à l'est. Le pôle magnétique, c'est-à-dire les masses ferrugineuses et magnétiques qui le formoient étoient donc situées dans le
nord de l'Europe, et peut-être en Sibérie ; mais comme depuis cette année 1580 l'on a commencé à défricher quelques terrains dans l'Amérique septentrionale, et qu'on a découvert et travaillé des mines de fer en Canada et dans plusieurs autres parties de cette région de l'Amérique, l'aiguille s'est peu à peu portée vers l'ouest, par l'attraction de ces mines nouvelles, plus puissante que celle des anciennes; et ce mouvement progressif de l'aiguille pourrait devenir rétrograde s'il se découvrait dans le nord de l'Europe et de l'Asie d'autres grandes masses ferrugineuses qui, par leur exploitation à l'air et leur aimantation, deviendraient bientôt des pôles magnétiques aussi et peut-être plus puissants que celui qui détermine aujourd'hui la déclinaison de l'aiguille vers le nord de l'Amérique, et dont l'existence est prouvée par les observations.

Parmi ces causes, toutes accidentelles, qui doivent faire changer la direction de l'aimant, l'on doit compter comme l'une des plus puissantes l'éruption des volcans, et les torrents de laves et de basaltes, dont la substance est toujours mêlée de beaucoup de fer. Ces laves et ces basaltes occupent souvent de très grandes étendues à la surface de la terre, et doivent par conséquent influer sur la direction de l'aimant; en sorte qu'un volcan, qui, par ses éjections, produit souvent de longues chaînes de collines composées de laves et de basaltes, forme pour ainsi dire de nouvelles mines de fer dont l'action doit seconder ou contrair l'effet des autres mines sur la direction de l'aimant.

Nous pouvons même assurer que ces basaltes peuvent former non seulement de nouvelles mines de
fer, mais aussi de véritables masses d'aimant; car leurs colonnes ont souvent des pôles bien décidés d'attraction et de répulsion. Par exemple, les colonnades de basalte des bords de la Volane, près de Val en Vivarais, ainsi que celles de la montagne de Chenavari, près de Rochemaure, qui ont plus de douze pieds de hauteur, présentent plusieurs colonnes douées de cette vertu magnétique, laquelle peut leur avoir été communiquée par les foudres électriques ou par le magnétisme général du globe.

Il en est de même des tremblements de terre et des bouleversements que produisent leurs mouvements subits et désastreux: ce sont les foudres de l'électricité souterraine, dont les coups frappent et soulèvent par secousses de grandes portions de terre, et dès lors toute la matière ferrugineuse qui se trouve dans cette grande étendue devient magnétique par l'action de cette foudre électrique; ce qui produit encore de nouvelles mines attirables à l'aimant, dans les lieux où il n'existait auparavant que du fer en rouille, en ocre, et qui, dans cet état, n'était point magnétique.

Les grands incendies des forêts produisent aussi une quantité considérable de matière ferrugineuse et magnétique. La plus grande partie des terres du Nouveau-Monde étoient non seulement couvertes, mais encore encombrées de bois morts ou vivants, auxquels on a mis le feu pour donner du jour et rendre la terre susceptible de culture. Et c'est surtout dans l'Amérique septentrionale que l'on a brûlé et que l'on brûle

1. Note communiquée par M. Faujas de Saint-Fond.
encore ces immenses forêts dans une vaste étendue; et cette cause particulière peut avoir influé sur la déclinaison vers l'ouest de l'aimant en Europe.

On ne doit donc regarder la déclinaison de l'aimant que comme un effet purement accidentel, et le magnétisme comme un produit particulier de l'électricité du globe. Nous allons exposer en détail tous les faits qui ont rapport aux phénomènes de l'aimant, et l'on verra qu'aucun ne démentira la vérité de cette assertion.

ARTICLE II.

De la nature et de la formation de l'aimant.

L'aimant n'est qu'un minéral ferrugineux qui a subi l'action du feu, et ensuite a reçu, par l'électricité générale du globe terrestre, son magnétisme particulier. L'aimant primordial est une mine de fer en roche vitreuse, qui ne diffère des autres mines de fer produites par le feu primitif qu'en ce qu'elle attire puissamment les autres matières ferrugineuses qui ont de même subi l'action du feu. Ces mines de l'aimant primordial sont moins fusibles que les autres mines primitives de fer; elles approchent de la nature du régule de ce métal, et c'est par cette raison qu'elles sont plus difficiles à fondre. L'aimant primordial a donc souffert une plus violente ou plus longue impression du feu primitif que les autres mines de fer; et il a en même temps acquis la vertu magnétique par l'action de la force qui, dès le commencement, a produit l'électricité du globe.
Cet aimant de première formation a communiqué sa vertu aux matières ferrugineuses qui l’environnaient; il a même formé de nouveaux aimants par le mélange de ses débris avec d’autres matières; et ces aimants de seconde formation ne sont aussi que des minéraux ferrugineux, provenant des détriments du fer en état métallique, et qui sont devenus magnétiques par la seule exposition à l’action de l’électricité générale. Et comme le fer qui demeure long-temps dans la même situation acquiert toutes les propriétés du véritable aimant, on peut dire que l’aimant et le fer ne sont au fond que la même substance, qui peut également prendre du magnétisme à l’exclusion de toutes les autres matières minérales, puisque cette même propriété magnétique ne se trouve dans aucun autre métal, ni dans aucune autre matière vitreuse ou calciaire. L’aimant de première formation est une fonte ou régule de fer mêlé d’une matière vitreuse, pareille à celle des autres mines primordiales de fer: mais, dans les aimants de seconde formation, il s’en trouve dont la matière pierreuse est calcaire ou mélangée d’autres substances hétérogènes. Ces aimants secondaires varient plus que les premiers par la couleur, la pesanteur, et par la quantité de force magnétique.

Mais cette matière vitreuse ou calcaire des différentes pierres d’aimant n’est nullement susceptible de magnétisme, et ce n’est qu’aux parties ferrugineuses contenues dans ces pierres qu’on doit attribuer cette propriété; et dans toute pierre d’aimant, vitreuse ou calcaire, la force magnétique est d’autant plus grande que la pierre contient plus de parties ferrugineuses
sous le même volume, en sorte que les meilleurs aimants sont ceux qui sont les plus pesants. C'est par cette raison qu'on peut donner au fer, et mieux encore à l'acier, comme plus pesant que le fer, une force magnétique encore plus grande que celle de la pierre d'aimant, parce que l'acier ne contient que peu ou point de particules terrestres, et qu'il est presque uniquement composé de parties ferrugineuses réunies ensemble sous le plus petit volume, c'est-à-dire d'aussi près qu'il est possible.

Ce qui démontre l'affinité générale entre le magnétisme et toutes les mines de fer qui ont subi l'action du feu primitif, c'est que toutes ces mines sont attirables à l'aimant, que réciproquement elles attirent, au lieu que les mines de fer en rouille, en ocre, et en grains, formées postérieurement par l'intermédiaire de l'eau, ont perdu cette propriété magnétique, et ne la reprennent qu'après avoir subi de nouveau l'action du feu. Il en est de même de tous nos fers et de nos aciers; c'est parce qu'ils ont, comme les mines primitives, subi l'action d'un feu violent, qu'ils sont attirables à l'aimant. Ils ont donc, comme les mines primordiales de fer, un magnétisme passif que l'on peut rendre actif, soit par le contact de l'aimant, soit par la simple exposition à l'impression de l'électricité générale.

Pour bien entendre comment s'est opérée la formation des premiers aimants, il suffit de considérer que toute matière ferrugineuse qui a subi l'action du feu, et qui demeure quelque temps exposée à l'air dans la même situation, acquiert le magnétisme et devient un véritable aimant : ainsi, dès les premiers
temps de l'établissement des mines primordiales de fer, toutes les parties extérieures de ces masses, qui étaient exposées à l'air et qui sont demeurées dans la même situation, auront reçu la vertu magnétique par la cause générale qui produit le magnétisme du globe, tandis que toutes les parties de ces mêmes mines qui n'étoient pas exposées à l'action de l'atmosphère n'ont point acquis cette vertu magnétique; il s'est donc formé dès lors, et il peut encore se former, des aimants sur les sommets et les faces découvertes des mines de fer, et dans toutes les parties de ces mines qui sont exposées à l'action de l'atmosphère.

Ainsi les mines d'aimant ne sont que des mines de fer qui se sont aimantées par l'action de l'électricité générale; elles ne sont pas, à beaucoup près, en aussi grandes masses que celles de fer, parce qu'il n'y a que les parties découvertes de ces mines qui aient pu recevoir la vertu magnétique: les mines d'aimant ne doivent donc se trouver et ne se trouvent en effet que dans les parties les plus extérieures de ces mines primordiales de fer, et jamais à de grandes profondeurs, à moins que ces mines n'aient été excavées, ou qu'elles ne soient voisines de quelques cavernes, dans lesquelles les influences de l'atmosphère auroient pu produire le même effet que sur les sommets ou sur les faces découvertes de ces mines primitives.

Maintenant on ne peut douter que le magnétisme général du globe ne forme deux courants, dont l'un se porte de l'équateur au nord, et l'autre, en sens contraire, de l'équateur au sud: la direction de ces courants est sujette à variation, tant pour les lieux que pour le temps; et ces variations proviennent des
inflexions du courant de la force magnétique, qui suit le gisement des matières ferrugineuses, et qui change à mesure qu’elles se découvrent à l’air ou qu’elles s’ensouissent par l’affaissement des cavernes, par l’effet des volcans, des tremblements de terre, ou de quelque autre cause qui change leur exposition: elles acquièrent donc ou perdent la vertu magnétique par ce changement de position, et dès lors la direction de cette force doit varier, et tendre vers ces mines ferrugineuses nouvellement découvertes, en s’éloignant de celles qui se sont enfoncées.

Les variations dans la direction de l’aimant démontrent que les pôles magnétiques ne sont pas les mêmes que les pôles du globe, quoiqu’en général la direction de la force qui produit le magnétisme tende de l’équateur aux deux pôles terrestres. Les matières ferrugineuses, qui seules peuvent recevoir du courant de cette force les propriétés de l’aimant, forment des pôles particuliers selon le gisement local et la quantité plus ou moins grande des mines d’aimant et de fer.

L’aimant primordial n’a pas acquis au même instant son attraction et sa direction; car le fer reçoit d’abord la force attractive et ne prend des pôles qu’en plus ou moins de temps, suivant sa position et selon la proportion de ses dimensions. Il paraît donc que, dès le temps de l’établissement et de la formation des premières mines de fer par le feu primitif, les parties exposées à l’action de l’atmosphère ont reçu d’abord la force attractive, et ont pris ensuite des pôles fixes, et acquis la puissance de se diriger vers les parties polaires du globe. Ces premiers aimants ont certaine-
ment conservé ces forces attractives et directives, quoiqu’elles agissent sans cesse au dehors, ce qui sembleront devoir les épuiser; mais au contraire elles se communiquent de l’aimant au fer sans souffrir aucune perte ni diminution.

Plusieurs physiciens qui ont traité de la nature de l’aimant se sont persuadé qu’il circulait dans l’aimant une matière qui en sortoit incessamment après y être entrée et en avoir pénétré la substance. Le célèbre géomètre Euler, et plusieurs autres 1, voulant expliquer mécaniquement les phénomènes magnétiques, ont adopté l’hypothèse de Descartes, qui suppose dans la substance de l’aimant des conduits et des pores si étroits, qu’ils ne sont perméables qu’à cette matière magnétique, selon eux, plus subtile que toute autre matière subtile; et, selon eux encore, ces pores de l’aimant et du fer sont garnis de petites soupières, de filets ou de poils mobiles, qui tantôt obéissent et tantôt s’opposent au courant de cette matière si subtile. Ils se sont efforcés de faire cadrer les phénomènes du magnétisme avec ces suppositions peu naturelles et plus que précaires, sans faire attention que leur opinion n’est fondée que sur la fausse idée qu’il est possible d’expliquer mécaniquement tous les effets des forces de la nature. Euler a même cru

1. Je voudrois excepter de ce nombre Daniel Bernouilli, homme d’un esprit excellent. « Je me sens, dit-il, de la répugnance à croire que la nature ait formé cette matière cannelle, et ces conduits magnétiques qui ont été imaginés par quelques physiciens, uniquement pour nous donner le spectacle des différents jeux de l’aimant. » Néanmoins ce grand mathématicien rapporte, comme les autres, à des causes mécaniques les effets de l’aimant: ses hypothèses sont seulement plus générales et moins multipliées.
pouvoir démontrer la cause de l'attraction universelle par l'action du même fluide qui, selon lui, produit le magnétisme. Cette prétention, quoique vaine et mal conçue, n'a pas laissé de prévaloir dans l'esprit de quelques physiciens; et cependant, si l'on considère sans préjugé la nature et ses effets, et si l'on réfléchit sur les forces d'attraction et d'impulsion qui l'animent, on reconnaîtra que leurs causes ne peuvent ni s'expliquer ni même se concevoir par cette mécanique matérielle qui n'admet que ce qui tombe sous nos sens, et rejette, en quelque sorte, ce qui n'est aperçu que par l'esprit; et de fait l'action de la pesanteur ou de l'attraction peut-elle se rapporter à des effets mécaniques et s'expliquer par des causes secondaires, puisque cette attraction est une force générale, une propriété primitive, et un attribut essentiel de toute matière? Ne suffit-il pas de savoir que toute matière s'attire, et que cette force s'exerce non seulement dans toutes les parties de la masse du globe terrestre, mais s'étend même depuis le soleil jusqu'aux corps les plus éloignés dans notre univers, pour être convaincu que la cause de cette attraction ne peut nous être connue, puisque son effet étant universel, et s'exerçant généralement dans toute matière, cette cause ne nous offre aucune différence, aucun point de comparaison, ni par conséquent aucun indice de connaissance, aucun moyen d'explication? En se souvenant donc que nous ne pouvons rien juger que par comparaison, nous verrons clairement qu'il est non seulement vain, mais absurde, de vouloir rechercher et expliquer la cause d'un effet général et commun à toute matière, tel que l'attraction universelle, et qu'on
doit se borner à regarder cet effet général comme une vraie cause à laquelle on doit rapporter les autres forces, en comparant leurs différents effets; et si nous comparons l'attraction magnétique à l'attraction universelle, nous verrons qu'elles diffèrent très essentiellement. L'aimant est, comme toute autre matière, sujet aux lois de l'attraction générale, et en même temps il semble posséder une force attractive particulière, et qui ne s'exerce que sur le fer ou un autre aimant: or nous avons démontré que cette force, qui nous paroit attractive, n'est dans le réel qu'une force impulsive, dont la cause et les effets sont tout différents de ceux de l'attraction universelle.

Dans le système adopté par la plupart des physiciens, on suppose un grand tourbillon de matière magnétique circulant autour du globe terrestre, et de petits tourbillons de cette même matière, qui non seulement circule d'un pôle à l'autre de chaque aimant, mais entre dans leur substance, et en sort pour y rentrer. Dans la physique de Descartes, tout étoit tourbillon, tout s'expliquoit par des mouvements circulaires et des impulsions tourbillonnantes: mais ces tourbillons, qui remplissoient l'univers, ont disparu; il ne reste que ceux de la matière magnétique dans la tête de ces physiciens. Cependant l'existence de ces tourbillons magnétiques est aussi peu fondée que celle des tourbillons planétaires; et on peut démontrer, par plusieurs faits, que la force magnétique ne se met pas en tourbillon autour du globe terrestre, non plus qu'autour de l'aimant.

La vertu magnétique, que l'aimant possède éminemment, peut de même appartenir au fer, puisque
l'aimant, lui communique par le simple contact, et que même le fer l'acquiert sans ce secours, lorsqu'il est exposé aux impressions de l'atmosphère : le fer devient alors un véritable aimant, s'il reste long-temps dans la même situation ; de plus, il s'aimante assez fortement par la percussion, par le frottement de la lime, ou seulement en le pliant et repliant plusieurs fois : mais ces derniers moyens ne donnent au fer qu'un magnétisme passager, et ce métal ne conserve la vertu magnétique que quand il l'a empruntée de l'aimant, ou bien acquise par une exposition à l'action de l'électricité générale pendant un temps assez long pour prendre des pôles fixes dans une direction déterminée.

Lorsque le fer, tenu long-temps dans la même situation, acquiert de lui-même la vertu magnétique, qu'il la conserve, et qu'il peut même la communiquer à d'autres fers, comme le fait l'aimant, doit-on se refuser à croire que, dans les mines primitives, les parties qui se sont trouvées exposées à ces mêmes impressions de l'atmosphère ne soient pas celles qui ont acquis la vertu magnétique, et que par conséquent toutes les pierres d'aimant, qui ne forment que de petits blocs en comparaison des montagnes et des autres masses des mines primordiales de fer, étoient aussi les seules parties exposées à cette action extérieure qui leur a donné les propriétés magnétiques ? Rien ne s'oppose à cette vue, ou plutôt à ce fait ; car la pierre d'aimant est certainement une matière ferrugineuse moins fusible, à la vérité, que la plupart des autres mines de fer ; et cette dernière propriété indique seulement qu'il a fallu peut-être le concours
de deux circonstances pour la production de ces aimants primitifs, dont la première a été la situation et l'exposition constante à l'impression du magnétisme général; et la seconde, une qualité différente dans la matière ferrugineuse qui compose la substance de l'aimant: car la mine d'aimant n'est plus difficile à fondre que les autres mines de fer en roche que par cette différence de qualité. L'aimant primordial approche, comme nous l'avons dit, de la nature du règule de fer, qui est bien moins fusible que sa mine. Ainsi cet aimant primitif est une mine de fer qui, ayant subi une plus forte action du feu que les autres mines, est devenue moins fusible; et en effet, les mines d'aimant ne se trouvent pas, comme les autres mines de fer, par grandes masses continues, mais par petits blocs placés à la surface de ces mêmes mines, où le feu primitif, animé par l'air, était plus actif que dans leur intérieur.

Ces blocs d'aimant sont plus ou moins gros, et communément séparés les uns des autres; chacun a sa sphère particulière d'attraction et ses pôles; et puisque le fer peut acquérir de lui-même toutes ces propriétés dans les mêmes circonstances, ne doit-on pas en conclure que, dans les mines primordiales de fer, les parties qui étoient exposées au feu plus vif que l'air excitoit à la surface du globe en incandescence auront subi une plus violente action de ce feu, et se seront en même temps divisées, fendues, séparées, et qu'elles auront acquis d'elles-mêmes cette puissance magnétique qui ne diminue ni ne s'épuise, et demeure toujours la même, parce qu'elle dépend
d'une cause extérieure, toujours subsistante et toujours agissante?

La formation des premiers aimants me paroit donc bien démontrée; mais la cause première du magnétisme, en général, n'en étoit pas mieux connue. Pour deviner ou même soupçonn er quelles peuvent être la cause ou les causes d'un effet particulier de la nature, tel que le magnétisme, il falloit auparavant considérer les phénomènes, en exposant tous les faits acquis par l'expérience et l'observation. Il falloit les comparer entre eux, et avec d'autres faits analogues, afin de pouvoir tirer du résultat de ces comparaisons les lumières qui devoient nous guider dans la recherche des causes inconnues et cachées : c'est la seule route que l'on doive prendre et suivre, puisque ce n'est que sur des faits bien avérés, bien entendus, qu'on peut établir des raisonnements solides; et plus ces faits seront multipliés, plus il deviendra possible d'en tirer des inductions plausibles, et de les réunir pour en faire la base d'une théorie bien fondée, telle que nous paroit être celle que j'ai présentée dans le premier chapitre de ce traité.

Mais, comme les faits particuliers qu'il nous reste à exposer sont aussi nombreux que singuliers, qu'ils paroissent quelquefois opposés ou contraires, nous commencerons par les phénomènes qui ont rapport à l'attraction ou à la répulsion de l'aimant, et ensuite nous exposerons ceux qui nous indiquent sa direction avec ses variations, tant en déclinaison qu'en inclinaison. Chacune de ces grandes propriétés de l'aimant doit être considérée en particulier, et d'autant plus
attentivement, qu'elles paroissent moins dépendantes
les unes des autres, et qu'en ne les jugeant que par
les apparences, leurs effets sembloient provenir de
causes différentes.

Au reste, si nous recherchons le temps où l'aimant
et ses propriétés ont commencé d'être connus, ainsi
que les lieux où ce minéral se trouvoit anciennement,
notre verra, par le témoignage de Théophraste, que
l'aimant étoit rare chez les Grecs, qui ne lui connois-
soient d'autre propriété que celle d'attirer le fer : mais
du temps de Pline, c'est-à-dire trois siècles après,
l'aimant étoit devenu plus commun ; et aujourd'hui il
s'en trouve plusieurs mines dans les terres voisines de
la Grèce, ainsi qu'en Italie, et particulièrement à l'île
d'Elbe. On doit donc présumer que la plupart des
mines de ces contrées ont acquis, depuis le temps de
Théophraste, leur vertu magnétique, à mesure qu'el-
les ont été découvertes, soit par des effets de la nature,
soit par le travail des hommes ou par le feu des vol-
cans.

On trouve de même des mines d'aimant dans pres-
que toutes les parties du monde, et surtout dans les
pays du nord, où il y a beaucoup plus de mines pri-
mordiales de fer que dans les autres régions de la
terre. Nous avons donné ci-devant la description des
mines aïmantées de Sibérie, et l'on sait que l'aimant
est si commun en Suède et en Norvège, qu'on en fait
un commerce assez considérable.

Les voyageurs nous assurent qu'en Asie il y a de
bons aimants au Bengale, à Siam, à la Chine, et aux
îles Philippines ; ils font aussi mention de ceux de l'A-
frîque et de l'Amérique.
ARTICLE III.

De l'attraction et de la répulsion de l'aimant.

Le mouvement du magnétisme semble être composé de deux forces, l'une attractive et l'autre directive. Un aimant, de quelque figure qu'il soit, attire le fer de tous côtés et dans tous les points de sa surface; et plus les pierres d'aimant sont grosses, moins elles ont de force attractive, relativement à leur volume; elles en ont d'autant plus qu'elles sont plus pesantes, et toutes ont beaucoup moins de puissance d'attraction quand elles sont nues que quand elles sont armées de fer ou d'acier. La force directive, au contraire, se marque mieux, et avec plus d'énergie, sur les aimants nus que sur ceux qui sont armés.

Quelques savants physiciens, et, entre autres, Taylor et Musschenbroeck, ont essayé de déterminer par des expériences l'étendue de la sphère d'attraction de l'aimant, et l'intensité de cette action à différentes distances; ils ont observé qu'avec de bons aimants cette force attractive étoit sensible jusqu'à treize ou quatorze pieds de distance; et, sans doute, elle s'étend encore plus loin. Ils ont aussi reconnu que rien ne pouvoit intercepter l'action de cette force, en sorte qu'un aimant renfermé dans une boîte agit toujours à la même distance. Ces faits suffisent pour qu'on puisse concevoir qu'en plaçant et cachant des aimants et du fer en différents endroits, même assez éloignés, on peut produire des effets qui paraissent merveilleux, parce qu'ils s'opèrent à quelque distance, sans action
apparente d'aucune matière intermédiaire, ni d'aucun mouvement communiqué.

Les anciens n'ont connu que cette première propriété de l'aimant ; ils savoient que le fer, de quelque côté qu'on le présente, est toujours attiré par l'aimant ; ils n'ignoront pas que deux aimants présentés l'un à l'autre s'attirent ou se repoussent. Les physiciens modernes ont démontré que cette attraction et cette répulsion entre deux aimants sont égales, et que la plus forte attraction se fait lorsqu'on présente directement les pôles de différents noms, c'est-à-dire le pôle austral d'un aimant au pôle boréal d'un autre aimant ; et que de même la répulsion est la plus forte quand on présente l'un à l'autre les pôles de même nom. Ensuite ils ont cherché la loi de cette attraction et de cette répulsion ; ils ont reconnu qu'au lieu d'être, comme la loi de l'attraction universelle, en raison inverse du carré de la distance, cette attraction et cette répulsion magnétiques ne décroissent pas même autant que la distance augmente : mais lorsqu'ils ont voulu graduer l'échelle de cette loi, ils y ont trouvé tant d'inconstance et de si grandes variations, qu'ils n'ont pu déterminer aucun rapport fixe, aucune proportion suivie, entre les degrés de puissance de cette force attractive et les effets qu'elle produit à différentes distances ; tout ce qu'ils ont pu conclure d'un nombre infini d'expériences, c'est que la force attractive de l'aimant décroît proportionnellement plus dans les grandes que dans les petites distances.

Nous venons de dire que les aimants ne sont pas tous d'égale force, à beaucoup près ; que plus les pier-
Les rés d'aimant sont grosses, moins elles ont de force attractive relativement à leur volume, et qu'elles en ont d'autant plus qu'elles sont plus pesantes, à volume égal : mais nous devons ajouter que les aimants les plus puissants ne sont pas toujours les plus généreux, en sorte que quelquefois ces aimants plus puissants ne communiquent pas au fer autant de leur vertu attractive que des aimants plus faibles et moins riches, mais en même temps moins avares de leur propriété.

La sphère d'activité des aimants faibles est moins étendue que celle des aimants forts ; et, comme nous l'avons dit, la force attractive des uns et des autres décroît beaucoup plus dans les grandes que dans les petites distances : mais, dans le point de contact, cette force, dont l'action est très inégale à toutes les distances dans les différents aimants, produit alors un effet moins inégal dans l'aimant faible et dans l'aimant fort, de sorte qu'il faut employer des poids moins inégaux pour séparer les aimants forts et les aimants faibles, lorsqu'ils sont unis au fer ou à l'aimant par un contact immédiat.

Le fer attire l'aimant autant qu'il en est attiré : tous deux, lorsqu'ils sont en liberté, font la moitié du chemin pour s'approcher ou se joindre. L'action et la réaction sont ici parfaitement égales : mais un aimant attire le fer de quelque côté qu'on le présente, au lieu qu'il n'attire un autre aimant que dans un sens, et qu'il le repousse dans le sens opposé.

La limaille de fer est attirée plus puissamment par l'aimant que la poudre même de la pierre d'aimant, parce qu'il y a plus de parties ferrugineuses dans le fer forgé que dans cette pierre, qui néanmoins agit.
de plus loin sur le fer aimanté qu'elle ne peut agir sur du fer non aimanté; car le fer n'a par lui-même aucune force attractive: deux blocs de ce métal, mis l'un auprès de l'autre, ne s'attirent pas plus que deux masses de toute autre matière; mais dès que l'un ou l'autre, ou tous deux, ont reçu la vertu magnétique, ils produisent les mêmes effets, et présentent les mêmes phénomènes que la pierre d'aimant, qui n'est en effet qu'une masse ferrugineuse aimantée par la cause générale du magnétisme. Le fer ne prend aucune augmentation de poids par l'imprégnation de la vertu magnétique; la plus grosse masse de fer ne pèse pas un grain de plus, quelque fortement qu'elle soit aimantée: le fer ne reçoit donc aucune matière réelle par cette communication, puisque toute matière est pesante, sans même en excepter celle du feu. Cependant le feu violent agit sur l'aimant et sur le fer aimanté; il diminue beaucoup, ou plutôt il suspend leur force magnétique lorsqu'ils sont échauffés jusqu'à l'incandescence, et ils ne reprennent cette vertu qu'à mesure qu'ils se refroidissent. Une chaleur égale à celle du plomb fondu ne suffit pas pour produire cet effet: et d'ailleurs le feu, quelque violent qu'il soit, laisse toujours à l'aimant et au fer aimanté quelque portion de leurs forces; car, dans l'état de la plus grande incandescence, ils donnent encore des signes sensibles, quoique foibles, de leur magnétisme. M. Épinus a même éprouvé que des aimants naturels portés à l'état d'incandescence, refroidis ensuite, et placés entre deux grandes barres d'acier fortement aimantées, acquéroient un magnétisme plus fort; et, par la comparaison de ses expé-
L'action du feu ne fait donc que diminuer ou suspendre la vertu magnétique, et concourt même quelquefois à l'augmenter : cependant la percussion, qui produit toujours de la chaleur lorsqu'elle est réitérée, semble détruire cette force en entier; car si l'on frappe fortement, et par plusieurs coups successifs, une lame de fer aimantée, elle perdra sa vertu magnétique, tandis qu'en frappant de même une semblable lame non aimantée, celle-ci acquerra, par cette percussion, d'autant plus de force magnétique que les coups seront plus forts et plus réitérés : mais il faut remarquer que la percussion, ainsi que l'action du feu, qui semble détruire la vertu magnétique, ne font que la changer ou la chasser, pour en substituer une autre, puisqu'elles suffisent pour aimanter le fer qui ne l'est pas; elles ôtent donc au fer aimanté la force communiquée par l'aimant, et en même temps y portent et lui substituent une nouvelle force magnétique, qui devient très sensible lorsque la percussion est continuée ; le fer perd la première, et acquiert la seconde, qui est souvent plus foible et moins durable : il arrive ici le même effet à peu près que quand on passe sur un aimant foible du fer aimanté par un aimant fort ; ce fer perd la grande force magnétique qui lui avait été communiquée par l'aimant fort, et il acquiert en même temps la petite force que peut lui donner l'aimant foible.

Si l'on met dans un vase de la limaille de fer et qu'on la comprime assez pour en faire une masse
compacte, à laquelle on donnera la vertu magnétique en l’appliquant ou la frottant contre l’aimant, elle la recevra comme toute autre matière ferrugineuse ; mais cette même limaille de fer comprimée, qui a reçu la vertu magnétique, perdra cette vertu dès qu’elle ne fera plus masse, et qu’elle sera réduite au même état pulvérulent où elle étoit avant d’avoir été comprimée. Il suffit donc de changer la situation respective des parties constituantes de la masse, pour faire évanouir la vertu magnétique ; chacune des particules de limaille doit être considérée comme une petite aiguille aimantée, qui dès lors a sa direction et ses pôles. En changeant donc la situation respective des particules, leurs forces attractives et directives seront changées et détruites les unes par les autres. Ceci doit s’appliquer à l’effet de la percussion, qui, produisant un changement de situation dans les parties du fer aimanté, fait évanouir sa force magnétique. Cela nous démontre aussi la cause d’un phénomène qui a paru singulier, et assez difficile à expliquer.

Si l’on met une pierre d’aimant au dessus d’une quantité de limaille de fer que l’on agitera sur un carton, cette limaille s’arrangera en formant plusieurs courbes séparées les unes des autres, et qui laissent deux vides aux endroits qui correspondent aux pôles de la pierre : on croirait que ces vides sont occasionnés par une répulsion qui ne se fait que dans ces deux endroits, tandis que l’attraction s’exerce sur la limaille dans tous les autres points ; mais lorsqu’on présente l’aimant sur la limaille de fer sans la secouer, ce sont, au contraire, les pôles de la pierre qui toujours s’en chargent le plus. Ces deux effets opposés semble-
roient, au premier coup d'œil, indiquer que la force magnétique est tantôt très active et tantôt absolument inactive aux pôles de l'aimant : cependant il est très certain, et même nécessaire, que ces deux effets, qui semblent être contraires, proviennent de la même cause ; et comme rien ne trouble l'effet de cette cause dans l'un des cas et qu'elle est troublée dans l'autre par les secousses qu'on donne à la limaille, on doit en inférer que la différence ne dépend que du mouvement donné à chaque particule de la limaille.

En général, ces particules étant autant de petites aiguilles qui ont reçu de l'aimant les forces attractive et directive presque en même temps et dans le même sens, elles doivent perdre ces forces, et changer de direction dès que, par le mouvement qu'on leur imprime, leur situation est changée. La limaille sera par conséquent attirée et s'amoncelera lorsque les pôles austral de ces petites aiguilles seront disposés dans le sens du pôle boréal de l'aimant, et cet même limaille formera des vides lorsque les pôles boréaux des particules seront dans le sens du pôle boréal de l'aimant, parce que, dans tout aimant ou fer aimanté, les pôles de différents noms s'attirent, et ceux de même nom se repoussent.

Il peut arriver cependant quelquefois, lorsqu'on présente un aimant vigoureux à un aimant faible, que les pôles de même nom s'attirent au lieu de se repousser : mais ils ont cessé d'être semblable lorsqu'ils tendent l'un vers l'autre ; l'aimant fort détruit par sa puissance la vertu magnétique de l'aimant faible, et lui en communique une nouvelle qui change ses pôles. On peut expliquer par cette même raison
plusieurs phénomènes analogues à cet effet, et particulièremment celui que M. Épinus a observé le premier, et que nous citons, par extrait, dans la note ci-dessous 1.

1. Que l'on tienne verticalement un aimant au dessus d'une table sur laquelle on aura placé une petite aiguille d'acier à une certaine distance du point au dessus duquel l'aimant sera suspendu, l'aiguille tendra vers l'aimant, et son extrémité la plus voisine de l'aimant s'élèvera au dessus de la surface de la table : si l'on frappe légèrement la table par dessous, l'aiguille se soulèvera en entier; et lorsqu'elle sera retombée, elle se trouvera plus près du point correspondant au dessous de l'aimant; son extrémité, s'élevant davantage, formera avec la table un angle moins aigu, et, à force de petits coups réitérés, elle parviendra précisément au dessous de l'aimant, et se tiendra perpendiculaire. Si, au contraire, on place l'aimant au dessous de la table, ce sera l'extrémité de l'aiguille la plus éloignée de l'aimant qui s'élèvera; l'aiguille, mise en mouvement par de légères secousses, se trouvera toujours, après être retombée, à une plus grande distance du point correspondant au dessus de l'aimant; son extrémité s'élèvera moins au dessus de la table, et formera un angle plus aigu. L'aiguille acquiert la vertu magnétique par la proximité de l'aimant. L'extrémité de l'aiguille opposée à cet aimant prend un pôle contraire au pôle de l'aimant dont elle est voisine; elle doit donc être attirée pendant que l'autre extrémité sera repoussée. Ainsi l'aiguille prendra successivement une position où l'une de ses extrémités sera le plus près, et l'autre le plus loin possible de l'aimant; elle doit donc tendre à se diriger parallèlement à une ligne droite que l'on pourrait tirer de son centre de gravité à l'aimant. Lorsque l'aiguille s'élève pour obéir à la petite secousse, la tendance que nous venons de reconnaître lui donne, pendant qu'elle est en l'air, une nouvelle position relativement à l'aimant; et s'il est suspendu au dessus de la table, cette nouvelle position est telle, que l'aiguille en retombant se trouve plus près du point correspondant au dessous de l'aimant : si, au contraire, l'aimant est au dessous de la table, la nouvelle position donnée à l'aiguille pendant qu'elle est encore en l'air fait nécessairement qu'après être tombée elle se trouve plus éloignée du point au dessous duquel l'aimant a été placé. Il est inutile de dire que si l'on remplace la petite aiguille par de la limaille de fer, l'on voit les mêmes effets produits dans toutes les particules qui composent la limaille.
Nous devons ajouter à ces faits un autre fait qui démontre également que la résidence fixe ainsi que la direction décidée de la force magnétique ne dépendent, dans le fer et l’aimant, que de la situation constante de leurs parties dans le sens où elles ont reçu cette force : le fer n’acquiert de lui-même la vertu magnétique, et l’aimant ne la communique au fer, que dans une seule et même direction ; car si l’on aimante un fil de fer selon sa longueur, et qu’ensuite on le plie de manière qu’il forme des angles et crochets, il perd dès lors sa force magnétique, parce que la direction n’est pas la même, et que la situation des parties a été changée dans les plis qui forment ces crochets ; les pôles des diverses parties du fer se trouvent alors situés, les uns relativement aux autres, de manière à diminuer ou détruire mutuellement leur vertu, au lieu de la conserver ou de l’accroître: et non seulement la force magnétique se perd dans ces parties angulaires, mais même elle ne subsiste plus dans les autres parties du fil de fer qui n’ont point été pliées ; car le déplacement des pôles et le changement de direction occasionés par les plis suffisent pour faire perdre cette force au fil de fer dans toute son étendue.

Mais si l’on passe un fil de fer par la filière, dans le même sens qu’il a été aimanté, il conservera sa vertu magnétique, quoique les parties constitutantes aient changé de position en s’éloignant les unes des autres, et que toutes aient concouru, plus ou moins, à l’allongement de ce fil de fer par leur déplacement; preuve évidente que la force magnétique subsiste ou s’évanouit selon que la direction se conserve la même
lorsque le déplacement se fait dans le même sens, ou que cette direction devient différente lorsque le déplacement se fait dans un sens opposé.

On peut considérer un morceau de fer ou d'acier comme une masse de limaille dont les particules sont seulement plus rapprochées et réunies de plus près que dans le bloc de limaille comprimée : aussi faut-il un violent mouvement, tel que celui d'une flexion forcée, ou d'une forte percussion, pour détruire la force magnétique dans le fer ou l'acier par le changement de la situation respective de leurs parties; au lieu qu'en donnant un coup assez léger sur la masse de la limaille comprimée, on fait évanouir à l'instant la force magnétique, parce que ce coup suffit pour changer la situation respective de toutes les particules de la limaille.

Si l'on ne passe qu'une seule fois une lame de fer ou d'acier sur l'aimant, elle ne reçoit que très peu de force magnétique par ce premier frottement; mais en le réitérant quinze ou vingt fois, toujours dans le même sens, le fer ou l'acier prendront presque toute la force magnétique qu'ils peuvent comporter, et on ne leur en donnerait pas davantage en continuant plus long-temps les mêmes frottements : mais si, après avoir aimanté une pièce de fer ou d'acier dans un sens, on la passe sur l'aimant dans un sens opposé, elle perd la plus grande partie de la vertu qu'elle avait acquise, et peut même la perdre tout-à-fait en réitérant les frottements dans ce sens contraire. Ce sont ces phénomènes qui ont fait imaginer à quelques physiciens que la force magnétique rend mobiles les particules dont le fer est composé. Au reste, si l'on
ne fait que poser le fer ou l'acier sur l'aimant, sans les presser l'un contre l'autre, ou les appliquer fortement, en les passant dans le même sens, ils ne reçoivent que peu de vertu magnétique, et ce ne sera qu'en les tenant réunis plusieurs heures de suite qu'ils en acquerront davantage, et cependant toujours moins qu'en les frottant dans le même sens, lentement et fortement, un grand nombre de fois sur l'aimant.

Le feu, la percussion, et la flexion, suspendent ou détruisent également la force magnétique, parce que ces trois causes changent également la situation respective des parties constituantes du fer et de l'aimant. Ce n'est même que par ce seul changement de la situation respective de leurs parties que le feu peut agir sur la force magnétique ; car on s'est assuré que cette force passe de l'aimant au fer, à travers la flamme, sans diminution ni changement de direction : ainsi ce n'est pas sur la force même que se porte l'action du feu, mais sur les parties intégrantes de l'aimant ou du fer, dont le feu change la position ; et lorsque, par le refroidissement, cette position des parties se rétablir telle qu'elle étoit avant l'incandescence, la force magnétique reparoit, et devient quelquefois plus puissante qu'elle ne l'étoit auparavant.

Un aimant artificiel et homogène, tel qu'un barreau d'acier fortement aimanté, exerce sa force attractive dans tous les points de sa surface, mais fortement inégale ment : car si l'on projette de la limaille de fer sur cet aimant, il n'y aura presque aucun point de sa superficie qui ne retienne quelques particules de cette limaille, surtout si elle est réduite en poudre très fine ; les pôles et les angles de ce barreau seront les parties
qui s'en chargeront le plus, et les faces n'en retiendront qu'une bien moindre quantité. La position des particules de limaille sera aussi fort différente ; on les verra perpendiculaires sur les parties polaires de l'aimant, et elles seront inclinées plus ou moins vers ces mêmes pôles dans toutes les autres parties de sa surface.

Rien n'arrête la vertu magnétique : un aimant placé dans l'air ou dans le vide, plongé dans l'eau, dans l'huile, dans le mercure, ou dans tout autre fluide, agit toujours également ; renfermé dans une boîte de bois, de pierre, de plomb, de cuivre, ou de tout autre métal, à l'exception du fer, son action est encore la même : l'interposition des corps les plus solides ne lui porte aucune atteinte, et ne fait pas obstacle à la transmission de sa force ; elle n'est affaiblie que par le fer interposé, qui, acquérant par cette position la vertu magnétique, peut augmenter, contre-balancer, ou détruire celle qui existoit déjà, suivant que les directions de ces deux forces particulières coïncident ou divergent.

Mais, quoique les corps interposés ne diminuent pas l'étendue de la sphère active de l'aimant sur le fer, ils ne laissent pas de diminuer beaucoup l'intensité de la force attractive, lorsqu'ils empêchent leur contact. Si l'on interpose entre le fer qu'on veut unir à l'aimant un corps aussi mince que l'on voudra, seulement une feuille de papier, l'aimant ne pourra soutenir qu'une très petite masse de fer en comparaison de celle qu'il aurait soutenue si le fer lui avait été immédiatement appliqué : cette différence d'effet provient de ce que l'intensité de la force est, sans compa-
raison, beaucoup plus grande au point de contact, et qu’en mettant obstacle à l’union immédiate du fer avec l’aimant, par un corps intermédiaire, on lui ôte la plus grande partie de sa force, en ne lui laissant que celle qu’il exerçait au delà de son point de contact. Mais cet effet, qui est si sensible à ce point, devient nul, ou du moins insensible, à toute autre distance; car les corps interposés à un pied, à un pouce, et même à une ligne de l’aimant, ne paraissent faire aucun obstacle à l’exercice de son attraction.

Le fer réduit en rouille cesse d’être attirable à l’aimant; la rouille est une dissolution du fer par l’humidité de l’air, ou, pour mieux dire, par l’action de l’acide aérioïne, qui, comme nous l’avons dit, a produit tous les autres acides : aussi agissent-ils tous sur le fer, et à peu près de la même manière; car tous le dissolvant, lui ôtent la propriété d’être attiré par l’aimant : mais il reprend cette même propriété lorsqu’on fait exhaler ces acides par le moyen du feu. Cette propriété n’est donc pas détruite en entier dans la rouille, et dans les autres dissolutions du fer, puisqu’elle se rétablit dès que le dissolvant en est séparé.

L’action du feu produit dans le fer un effet tout contraire à celui de l’impression des acides ou de l’humidité de l’air; le feu le rend d’autant plus attirable à l’aimant qu’il a été plus violemment chauffé. Ce sablon ferrugineux dont nous avons parlé, et qui est toujours mêlé avec la platine, est plus attirable à l’aimant que la limaille de fer, parce qu’il a subi une plus forte action du feu, et la limaille de fer chauffée jusqu’au blanc devient aussi plus attirable qu’elle ne l’était auparavant; on peut même dire qu’elle devient
toujours magnétique en certaines circonstances, puisque les petites écailles de fer qui se séparent de la loupe en incandescence frappée par le marteau présentent les mêmes phénomènes que l’aimant : elles s’attirent, se repoussent et se dirigent comme le font les aiguilles aimantées. On obtient le même effet en faisant sublimer le fer par le moyen du feu ; et les volcans donnent par sublimation des matières ferrugineuses qui ont du magnétisme et des pôles comme les fers sublimés et chauffés.

On augmente prodigieusement la forme attractive de l’aimant en la réunissant avec la force directive, au moyen d’une armure de fer ou d’acier ; car cette armure fait converger les directions, en sorte qu’il ne reste à l’aimant armé qu’une portion des forces directives qu’il avait étant nu, et que ce même aimant nu, qui, par ses parties polaires, ne pouvoit soutenir qu’un certain poids de fer, en soutiendra dix, quinze, ou vingt fois davantage, s’il est bien armé ; et plus le poids qu’il soutiendra étant nu sera petit, plus l’augmentation du poids qu’il pourra porter étant armé sera grande. Les forces directives de l’aimant se réunissent donc avec sa force attractive ; et toutes se portant sur l’armure, y produisent une intensité de force bien plus grande, sans que l’aimant en soit plus épuisé. Cela seul prouveroit que la force magnétique ne réside pas dans l’aimant, mais qu’elle est déterminée vers le fer et l’aimant par une cause extérieure dont l’effet peut augmenter ou diminuer, selon que les matières ferrugineuses lui sont présentées d’une manière

1. Expériences faites par MM. de l’Arbre et Quinquet, et communiquées à M. le comte de Buffon en 1786.
plus ou moins avantageuse : la force attractive n'augmente ici que par sa réunion avec la force directive, et l'armure ne fait que réunir ces deux forces pour leur donner plus d'extension ; car, quoique l'attraction, dans l'aimant armé, agisse beaucoup plus puissamment sur le fer, qu'elle retient plus fortement, elle ne s'étend pas plus loin que celle de l'aimant nu.

Cette plus forte attraction, produite par la réunion des forces attractive et directive de l'aimant, paroit s'exercer en raison des surfaces : par exemple, si la surface plane du pied de l'armure contre laquelle on applique le fer est de 56 lignes carrées, la force d'attraction sera quatre fois plus grande que sur une surface de 9 lignes carrées ; autre preuve que la cause de l'attraction magnétique est extérieure, et ne pénètre pas la masse de l'aimant, puisqu'elle n'agit qu'en raison des surfaces, au lieu que celle de l'attraction universelle, agissant toujours en raison des masses, est une force qui réside dans toute matière. D'ailleurs, toute force dont les directions sont différentes, et qui ne tend pas directement du centre à la circonférence, ne peut pas être regardée comme une force intérieure proportionnelle à la masse, et n'est en effet qu'une action extérieure qui ne peut se mesurer que par sa proportion avec la surface.

Les deux pôles d'un aimant se nuisant réciproquement par leur action contraire, lorsqu'ils sont trop voisins l'un de l'autre, la position de l'armure et la figure de l'aimant doivent également influer sur sa

1. M. Daniel Bernouilli a trouvé par plusieurs expériences que la force attractive des aimants artificiels de figure cubique croit comme la surface, et non pas comme la masse, de ces aimants.
force, et c'est par cette raison que des aimants faibles gagnent quelquefois davantage à être armés que des aimants plus forts. Cette action contraire de deux pôles trop rapprochés sert à expliquer pourquoi deux barres aimantées qui se touchent n'attirent pas un morceau de fer avec autant de force que lorsqu'elles sont à une certaine distance l'une de l'autre.

Les pieds de l'armure doivent être placés sur les pôles de la pierre pour réunir le plus de force : ces pôles ne sont pas des points mathématiques, ils ont une certaine étendue, et l'on reconnaît aisément les parties polaires d'un aimant en ce qu'elles retiennent le fer avec une grande énergie, et l'attirent avec plus de puissance que toutes les autres parties de la surface de ce même aimant ne peuvent le retenir ou l'attirer. Les meilleurs aimants sont ceux dont les pôles sont les plus décidés, c'est-à-dire ceux dans lesquels cette inégalité de force est la plus grande. Les plus mauvais aimants sont ceux dont les pôles sont les plus indécis, c'est-à-dire ceux qui ont plusieurs pôles et qui attirent le fer à peu près également dans tous les points de leur surface ; et le défaut de ces aimants vient de ce qu'ils sont composés de plusieurs pièces mal situées relativement les unes aux autres ; car, en les divisant en plusieurs parties, chacun de ces fragments n'aura que deux pôles bien décidés et fort actifs.

Nous avons dit que si l'on aimante un fil de fer en le frottant longitudinalement dans le même sens, il perdra la vertu magnétique en le pliant en crochet, ou le courbant et le contournant en anneau, et cela
parce que la force magnétique ne s’étant déterminée vers ce fil de fer que par un frottement dans le sens longitudinal, elle cesse de se diriger vers ce même fer dès que ce sens est changé ou interrompu; et lorsqu’il devient directement opposé, cette force produit nécessairement un effet contraire au premier: elle repousse, au lieu d’attirer, et se dirige vers l’autre pôle.

La répulsion dans l’aimant n’est donc que l’effet d’une attraction en sens contraire, et qu’on oppose à elle-même; toutes deux ne partent pas du corps de l’aimant, mais proviennent et sont des effets d’une force extérieure qui agit sur l’aimant en deux sens opposés; et dans tout aimant, comme dans le globe terrestre, la force magnétique forme deux courants en sens contraire, qui partent tous deux de l’équateur en se dirigeant aux deux pôles.

Mais on doit observer qu’il y a une inégalité de force entre les deux courants magnétiques du globe, dont l’hémisphère boréal offrant à sa surface beaucoup plus de terre que d’eau, et étant par conséquent moins froid que l’hémisphère austral, ne doit pas déterminer ce courant avec autant de puissance, en sorte que ce courant magnétique boréal a moins d’intensité de force que le courant de l’hémisphère austral, dans lequel la quantité des eaux et des glaces étant beaucoup plus grande que dans le boréal, la condensation des émanations terrestres provenant des régions de l’équateur doit être aussi plus rapide et plus grande; cette même inégalité se reconnaît dans les aimants. M. de Bruno a fait à ce sujet quelques
expériences, dont nous citons la plus décisive dans la note ci-dessous. Descartes avait dit auparavant que le côté de l'aimant qui tend vers le nord peut soutenir plus de fer dans nos régions septentrionales que le côté opposé, et ce fait a été confirmé par Rohault, et aujourd'hui par les expériences de M. de Bruno. Le pôle boréal est donc le plus fort dans les aimants, tandis que c'est au contraire le pôle le plus faible sur le globe terrestre ; et c'est précisément ce qui détermine les pôles boréaux des aimants à se porter vers le nord, comme vers un pôle dont la quantité de force est différente de celle qu'ils ont reçue.

Lorsqu'on présente deux aimants l'un à l'autre, et que l'on oppose les pôles de même nom, il est nécessaire qu'ils se repoussent, parce que la force magnétique, qui se porte de l'équateur du premier aimant à son pôle, agit dans une direction contraire et diamétralement opposée à la force magnétique, qui se porte en sens contraire dans le second aimant. Ces deux forces sont de même nature, leur quantité est égale, et par conséquent ces deux forces égales et opposées doivent produire une répulsion, tandis qu'elles n'offrent qu'une attraction si les deux aimants sont présentés l'un à l'autre par les pôles de différents noms, puisqu'alors les deux forces magnétiques, au lieu d'être égales, diffèrent par leur nature et par leurs 1.

1. Je posai un grand barreau magnétique sur une table de marbre blanc ; je plaçai une aiguille aimantée en équilibre sur un pivot, au point qui séparoit le grand barreau en deux parties égales. Le pôle austral s'inclina vers le pôle boréal du grand barreau. J'approchai insensiblement cette aiguille vers le pôle austral du grand barreau, jusqu'à ce qu'enfin je m'aperçus que la petite aiguille étoit dans une situation parfaitement horizontale.
quantités. Ceci seul suffiroit pour démontrer que la force magnétique ne circule pas en tourbillon autour de l'aimant, mais se porte seulement de son équateur à ses pôles en deux sens opposés.

Cette répulsion, qu'exercent l’un contre l’autre les pôles de même nom, sert à rendre raison d’un phénomène qui d’abord a surpris les yeux de quelques physiciens. Si l’on soutient deux aiguilles aimantées l’une au dessus de l’autre, et si on leur communique le plus léger mouvement, elles ne se fixent point dans la direction du méridien magnétique, mais elles s’en éloignent également des deux côtés, l’une à droite et l’autre à gauche de la ligne de leur direction naturelle.

Or cet écartement provient de l’action répulsive de leurs pôles ; et ce qui le prouve, c’est qu’à mesure qu’on fait descendre l’aiguille supérieure pour l’approcher de l’inférieure, l’angle de leur écartement devient plus grand, tandis qu’au contraire il devient plus petit à mesure qu’on fait remonter cette même aiguille supérieure au dessus de l’inférieure ; et lorsque les aiguilles sont assez éloignées l’une de l’autre pour n’être plus soumises à leur influence mutuelle, elles reprennent alors leur vraie direction, et n’obéissent plus qu’à la force du magnétisme général. Cet effet, dont la cause est assez évidente, n’a pas laissé d’induire en erreur ceux qui l’ont observé les premiers ; ils ont imaginé qu’on pourrait par ce moyen construire des boussoles dont l’une des aiguilles indiquerait le pôle terrestre, tandis que l’autre se dirigerait vers le pôle magnétique, en sorte que la première marquerait le vrai nord, et la seconde la
déclinaison de l'aimant : mais le peu de fondement de cette prétention est suffisamment démontré par l'angle que forment les deux aiguilles, et qui augmente ou diminue par l'influence mutuelle de leurs pôles, en les rapprochant ou les éloignant l'un de l'autre.

On déterminera plus puissamment, plus promptement, cette force extérieure du magnétisme général vers le fer en le tenant dans la direction du méridien magnétique de chaque lieu, et l'on a observé qu'en mettant dans cette situation des verges de fer, les unes en incandescence et les autres froides, les premières reçoivent la vertu magnétique bien plus tôt et en bien plus grande mesure que les dernières. Ce fait ajoute encore aux preuves que j'ai données de la formation des mines d'aimant par le feu primitif.

Il faut une certaine proportion dans les dimensions du fer pour qu'il puisse s'aimanter promptement de lui-même, et par la seule action du magnétisme général ; cependant tous les fers étant posés dans une situation perpendiculaire à l'horizon prendront dans nos climats quelque portion de vertu magnétique. M. le chevalier de Lamanon, ayant examiné les fers employés dans tous les vaisseaux qu'il a vus dans le port de Brest en 1785, a trouvé que tous ceux qui étoient placés verticalement avoient acquis la vertu magnétique. Il faut seulement un assez long temps

1. Nous devons cependant observer que le fer prend, à la vérité, plus de force magnétique dans l'état d'incandescence, mais qu'il ne la conserve pas en même quantité après son refroidissement. Un fer, tant qu'il est rouge, attire l'aiguille aimantée plus fortement et la fait mouvoir de plus loin que quand il est refroidi.
pour que cet effet se manifeste dans les fers qui sont gros et courts, moins de temps pour ceux qui sont épais et longs, et beaucoup moins pour ceux qui sont longs et menus. Ces derniers s’aimantent en quelques minutes, et il faut des mois et des années pour les autres. De quelque manière même que le fer ait reçu la vertu magnétique, il paraît que jusqu’à un certain point, et toutes choses égales, la force qu’il acquiert est en raison de sa longueur; les barreaux de fer qui sont aux fenêtres des anciens édifices ont souvent acquis, avec le temps, une assez grande force magnétique pour pouvoir, comme de véritables aimants, attirer et repousser d’une manière sensible l’aiguille aimantée à plusieurs pieds de distance.

Mais cette communication du magnétisme au fer s’opère très inégalement suivant les différents climats; on s’est assuré, par l’observation, que dans toutes les contrées des zones tempérées et froides le fer tenu verticalement acquiert plus promptement et en plus grande mesure la vertu magnétique que dans les régions qui sont sous la zone torride, dans lesquelles même il ne prend souvent que peu ou point de vertu magnétique dans cette position verticale.

Nous avons dit que les aimants ont proportionnellement d’autant plus de force qu’ils sont en plus petit volume. Une pierre d’aimant dont le volume excède vingt-sept ou trente pouces cubiques peut à peine porter un poids égal à celui de sa masse, tandis que dans les petites pierres d’aimant, d’un ou deux pouces cubiques, il s’en trouve qui portent vingt, trente, et même cinquante fois leur poids. Mais, pour faire des comparaisons exactes, il faut que le fer soit de la
mêmes qualités, et que les dimensions et la figure de chaque morceau soient semblables et égales; car un aimant qui soutiendroit un cube de fer du poids d'une livre ne pourra soutenir un fil de fer long d'un pied, qui ne pèseroit pas un gros; et si les masses à soutenir ne sont pas entièrement de fer, quoique de même forme; si par exemple on applique à l'aimant deux masses d'égal poids et de figure semblable, dont l'une seroit entièrement de fer et dont l'autre ne seroit de fer que dans la partie supérieure, et de cuivre ou d'autre matière dans la partie inférieure, cette masse composée de deux matières ne sera pas attirée ni soutenue avec la même force que la masse de fer continu, et elle tiendra d'autant moins à l'aimant que la portion de fer sera plus petite, et que celle de l'autre matière sera plus grande.

Lorsqu'on divise un gros aimant en plusieurs parties, chaque fragment, quelque petit qu'il soit, aura toujours des pôles. La vertu magnétique augmentera au lieu de diminuer par cette division; ces fragments, pris séparément, porteront beaucoup plus de poids que quand ils étoient réunis en un seul bloc. Cependant les gros aimants, même les plus faibles, répandent en proportion leur force à de plus grandes distances que les petits aimants les plus forts; et si l'on joint ensemble plusieurs petits aimants pour n'en faire qu'une masse, la vertu de cette masse s'étendra beaucoup plus loin que celle d'aucun des morceaux dont ce bloc est composé. Dans tous les cas cette force agit de plus loin sur un autre aimant, ou sur le fer aimanté, que sur le fer qui ne l'est pas.

On peut reconnaître assez précisément les effets de
l'attraction de l'aimant sur le fer, et sur le fer aimanté, par le moyen des boussoles, dont l'aiguille nous offre aussi par son mouvement les autres phénomènes du magnétisme général. La direction de l'aiguille vers les parties polaires du globe terrestre, sa déclinaison et son inclinaison dans les différents lieux du globe, sont les effets de ce magnétisme dont nous avons tiré le grand moyen de parcourir les mers et les terres inconnues, sans autre guide que cette aiguille, qui seule peut nous conduire lorsque l'aspect du ciel nous manque, et que tous les astres sont voilés par les nuages, les brouillards, et les brumes.

Ces aiguilles une fois bien aimantées sont de véritables aimants ; elles nous en présentent tous les phénomènes, et même les démontrent d'une manière plus précise qu'on ne pourrait les reconnaître dans les aimants mêmes : car l'aimant et le fer bien aimanté produisent les mêmes effets ; et lorsqu'une petite barre d'acier a été aimantée au point de prendre toute la vertu magnétique dont elle est susceptible, c'est dès lors un aimant qui, comme le véritable aimant, peut communiquer sa force, sans en rien perdre, à tous les fers et à tous les aciers qu'on lui présentera.

Mais ni l'aimant naturel ni ces aimants artificiels ne communiquent pas d'abord autant de force qu'ils en ont ; une lame de fer ou d'acier passée sur l'aimant en reçoit une certaine mesure de vertu magnétique, qu'on estime par le poids que cette lame peut soutenir ; si l'on passe une seconde lame sur la première, cette seconde lame ne recevra de même qu'une partie de la force de la première, et ne pourra soutenir qu'un moindre poids ; une troisième lame passée sur
la seconde ne prendra de même qu'une portion de la force de cette seconde lame ; et enfin dans une quatrième lame passée sur la troisième, la vertu communiquée sera presque insensible ou même nulle.

Chacune de ces lames conserve néanmoins toute la vertu qu'elle a reçue, sans perte ni diminution, quoi qu'elles paroissent en faire largesse en la communiquant ; car l'aimant ou le fer aimanté ne font aucune dépense réelle de cette force : elle ne leur appartient donc pas en propre, et ne fait pas partie de leur substance ; ils ne font que la déterminer plus ou moins vers le fer qui ne l'a pas encore reçue.

Ainsi, je le répète, cette force ne réside pas en quantité réelle et matérielle dans l'aimant, puisqu'elle passe sans diminution de l'aimant au fer et du fer au fer, qu'elle se multiplie au lieu de s'évanouir, et qu'elle augmente au lieu de diminuer par cette communication ; car chaque lame de fer en acquiert sans que les autres en perdent, et la force reste évidemment la même dans chacune, après mille et mille communications. Cette force est donc extérieure, et, de plus, elle est pour ainsi dire infinie relativement aux petites masses de l'aimant et du fer qui ne font que la déterminer vers leur propre substance : elle existe à part, et n'en existerait pas moins quand il n'y aurait point de fer ni d'aimant dans le monde ; mais il est vrai qu'elle ne produirait pas les mêmes effets, qui tous dépendent du rapport particulier que la matière ferrugineuse se trouve avoir avec l'action de cette force.
ARTICLE IV.

Divers procédés pour produire et compléter l'aimantation du fer.

Plusieurs circonstances concourent à rendre plus ou moins complète la communication de la force magnétique de l'aimant au fer. Premièrement, tous les aimants ne donnent pas au même fer une égale force attractive : les plus forts lui communiquent ordinairement plus de vertu que les aimants plus faibles. Seconde-ment, la qualité du fer influe beaucoup sur la quantité de vertu magnétique qu'il peut recevoir du même aimant ; plus le fer est pur, et plus il peut s'aimanter fortement ; l'acier, qui est le fer le plus épuré, reçoit plus de force magnétique et la conserve plus long-temps que le fer ordinaire. Troisièmement, il faut une certaine proportion dans les dimensions du fer ou de l'acier que l'on veut aminanter, pour qu'ils reçoivent la plus grande force magnétique qu'ils peuvent comporter. La longueur, la largeur, et l'épaisseur de ces fers ou aciers, ont leurs proportions et leurs limites : ces dimensions respectives ne doivent être ni trop grandes ni trop petites, et ce n'est qu'après une infinité de tâtonnements qu'on a pu déterminer à peu près leurs proportions relatives dans les masses de fer ou d'acier que l'on veut aminanter au plus haut degré.

Lorsqu'on présente à un aimant puissant du fer doux et du fer dur, les deux fers acquièrent la vertu magnétique, et en reçoivent autant qu'ils peuvent en
comporter; et le fer dur qui en comporte le plus, peut en recevoir davantage : mais si l’aimant n’est pas assez puissant pour communiquer aux deux fers toute la force qu’ils peuvent recevoir, on trouvera que le fer tendre, qui reçoit avec plus de facilité la vertu magnétique, aura, dans le même temps, acquis plus de force que le fer dur. Il peut aussi arriver que l’action de l’aimant sur les fers soit telle, que le fer tendre sera pleinement imprégné, tandis que le fer dur n’aura pas été exposé à cette action pendant assez de temps pour recevoir toute la force magnétique qu’il peut comporter, de sorte que tous deux peuvent présenter, dans ces deux cas, des forces magnétiques égales ; ce qui explique les contradictions des artistes sur la qualité du fer qu’on doit préférer pour faire des aimants artificiels.

Une verge de fer, longue et menue, rougie au feu, et ensuite plongée perpendiculairement dans l’eau, acquiert en un moment la vertu magnétique. L’on pourroit donc aimerter promptement des aiguilles de boussole sans aimant : il suffiroit, après les avoir fabriquées, de les faire rougir au feu et de les tremper ensuite dans l’eau froide. Mais ce qui paraît singulier, quoique naturel, c’est-à-dire dépendant des mêmes causes, c’est que le fer en incandescence, comme l’on voit, s’aimante très promptement, en le plongeant verticalement dans l’eau pour le refroidir, au lieu que le fer aimaillé perd sa vertu magnétique par

1. Nous devons cependant observer que ces aiguilles ne sont pas aussi actives ni aussi précises que celles qu’on a aimaillées en les passant vingt ou trente fois dans le même sens sur le pôle d’un aimant bien armé.
le feu, et ne la reprend pas étant de même plongé dans l'eau : et c'est parce qu'il conserve un peu de cette vertu, que le feu ne lui enlève pas tout entière; car cette portion qu'il conserve de son ancien magnétisme l'empêche d'en recevoir un nouveau.

On peut faire avec l'acier des aimants aussi puissants, aussi durables que les meilleurs aimants naturels; on a même observé qu'un aimant bien armé donne à l'acier plus de vertu magnétique qu'il n'en a lui-même. Ces aimants artificiels demandent seulement quelques attentions dans la fabrication, et de justes proportions dans leurs dimensions. Plusieurs physiciens, et quelques artistes habiles, ont, dans ces derniers temps, si bien réussi, tant en France qu'en Angleterre, qu'on pourrait, au moyen d'un de ces aimants artificiels, se passer à l'avenir des aimants de nature.

Il y a plus; on peut sans aimant ni fer aimanté, et par un procédé aussi remarquable qu'il est simple, exciter dans le fer la vertu magnétique à un très haut degré. Ce procédé consiste à poser sur la surface polie d'une forte pièce de fer, telle qu'une enclume, des barreaux d'acier, et à les frotter ensuite un grand nombre de fois, en les retournant sur leurs différentes faces, toujours dans le même sens, au moyen d'une grosse barre de fer tenue verticalement, et dont l'ex-

1. M. Le Noble, chanoine de Saint-Louis du Louvre, s'est surtout distingué dans cet art : il a composé des aimants artificiels de plusieurs lames d'acier réunies; il a trouvé le moyen de les aimanter plus fortement, et de leur donner les figures et les dimensions convenables pour produire les plus grands effets; et, comparaison faite des aimants de M. Le Noble avec ceux d'Angleterre, ils m'ont paru au moins égaux, et même supérieurs.
trémité inférieure, pour le plus grand effet, doit être aciérée et polie. Les barreaux d'acier se trouvent, après ces frottements, fortement aimantés, sans que l'enclume ni la barre, qui semblent leur communiquer la vertu magnétique, la possèdent ou la prennent sensiblement elles-mêmes; et rien ne semble plus propre à démontrer l'affinité réelle et le rapport intime du fer avec la force magnétique, lors même qu'elle ne s'y manifeste pas sensiblement, et qu'elle n'est pas formellement établie, puisque, ne la possédant pas, il la communique en déterminant son cours, et ne lui servant que de conducteur.

MM. Michel et Canton, au lieu de se servir d'une seule barre de fer pour produire des aimants artificiels, ont employé avec succès deux barres déjà magnétiques; leur méthode a été appelée méthode du double contact, à cause du double moyen qu'ils ont préféré. Elle a été perfectionnée par M. Épinus, qui a cherché et trouvé la manière la plus avantageuse de placer les forces dans les aimants artificiels, afin que celles qui attirent et celles qui repoussent se servent le plus et se nuisent le moins possible. Voici son procédé, qui est l'un des meilleurs auxquels on puisse avoir recours pour cet effet; et nous pensons qu'on doit le préférer pour aimanter les aiguilles des boussoles. M. Épinus suppose que l'on veuille augmenter jusqu'au degré de saturation la vertu de quatre barres déjà douées de quelque magnétisme: il en met deux horizontalement, parallèlement, et à une certaine distance l'une de l'autre, entre deux parallélipipèdes de fer; il place sur une de ces barres horizontales les deux autres barres qui lui restent; il les incline, l'une
à droite, l'autre à gauche, de manière qu'elles forment un angle de quinze à vingt degrés avec la barre horizontale, et que leurs extrémités inférieures ne soient séparées que par un espace de quelques lignes; il les conduit ensuite d'un bout de la barre à l'autre, alternativement dans les deux sens, et en les tenant toujours à la même distance l'une de l'autre. Après que la première barre horizontale a été ainsi frottée sur ses deux surfaces, il répète l'opération sur la seconde barre; il remplace alors la première paire de barres par la seconde, qu'il place de même entre les deux parallépipèdes, et qu'il frotte de la même manière que nous venons de le dire avec la première paire; il recommence ensuite l'opération sur cette première paire, et il continue de frotter alternativement une paire sur l'autre, jusqu'à ce que les barres ne puissent plus acquérir de magnétisme. M. Épinus emploie le même procédé avec trois barres, ou avec un plus grand nombre: mais, selon lui, la manière la plus courte et la plus sûre est d'aimanter quatre barres. On peut cou- cher entièrement les aimants sur la barre que l'on frotte, au lieu de leur faire former un angle de quinze ou vingt degrés, si la barre est assez courte pour que ses extrémités ne se trouvent pas trop voisines des pôles extérieurs des aimants, qui jouissent de forces opposées à celles de ces extrémités.

Lorsque la barre àaimanter est très longue, il peut se faire que l'ingénieux procédé de M. Épinus, ainsi que celui de M. Canton, produise une suite de pôles alternativement contraires, surtout si le fer est mou, et par conséquent susceptible de recevoir plus promptement le magnétisme.
M. Épinus s'est servi du procédé du double contact de deux manières : 1° avec quatre barres d'un fer médiocrement dur, longues de deux pieds, larges d'un pouce et demi, épaisse d'un demi-pouce, et douze lames d'acier de six pouces de long, de quatre lignes de large, et d'une demi-ligne d'épais. Les quatre premières étoient d'un acier mou ; quatre autres avaient la dureté de l'acier ordinaire avec lequel on fait les ressorts ; et les quatre autres barres étoient d'un acier dur jusqu'au plus haut degré de fragilité. Il a tenu verticalement une des grandes barres, et l'a frappée fortement, environ deux cents fois, à l'aide d'un gros marteau. Elle a acquis, par cette percussion, une vertu magnétique assez forte pour soutenir un petit clou de fer : l'extrémité inférieure a reçu la vertu du pôle boréal ; et l'extrémité supérieure, la vertu du pôle austral. Il a aimanté de même les autres trois grandes barres. Il a ensuite placé l'une des petites lames d'acier mou sur une table entre deux des grandes barres, comme dans le procédé du double contact, et l'a frottée, suivant le même procédé, avec les deux autres grandes barres ; il l'a ainsi magnétisée. Il l'a successivement remplacée par trois autres lames d'acier mou, et a porté la force magnétique de ces quatre lames au degré de saturation. Il a placé, après cela, deux des lames qui avaient la dureté des ressorts, entre deux paralléloépédes de fer mou, les a frottées avec deux faisceaux formés des quatre grandes barres, a fait la même opération sur les deux autres, a remplacé les quatre grandes barres par les quatre petites lames d'acier mou, et a porté ainsi jusqu'à la saturation la force magnétique des quatre lames ayant la
dureté des ressorts : il a terminé son procédé par répéter la même opération; et pour aïmanter jusqu'à saturation les lames qui présentoient le plus de dureté, il les a substituées à celles qui n'avoient que la dureté du ressort, et il a mis celles-ci à la place des grandes barres.

La seconde manière que M. Épinus a employée ne diffère de la première qu'en ce qu'il a fait faire les quatre grandes barres d'un fer très mou, et qu'il a mis la petite lame molle à aïmanter, ainsi que les deux grandes barres placées à son extrémité, dans la direction de l'inclinaison de l'aiguille aïmantée. Il a ensuite frotté la petite lame d'acier avec les deux autres grandes barres, en les tenant parallèlement à la petite lame, ou en ne leur faisant former qu'un angle très aigu.

Si l'on approche d'un aïman un longue barre de fer, la portion la plus voisine de l'aïman acquiert à cette extrémité, comme nous l'avons dit, un pôle opposé à celui qu'elle touche; une seconde portion de cette même barre offre un pôle contraire à celui de la portion contiguë à l'aïman; une troisième présente le même pôle que la première; une quatrième, que la seconde; et ainsi de suite. Les pôles alternativement opposés de ces quatre parties de la barre sont d'autant plus foibles qu'ils s'éloignent davantage de l'aïman; et leur nombre, toutes choses égales, est proportionné à la longueur de la barre.

Si on applique le pôle d'un aïman sur le milieu d'une lame, elle acquiert dans ce point un pôle contraire, et dans les deux extrémités deux pôles semblables à celui qui la touche. Si le fer est épais, la
surface opposée à l’aimant acquiert aussi un pôle semblable à celui qui est appliqué contre le fer; et si la barre est un peu longue, les deux extrémités présentent la suite des pôles alternativement contraires, et dont nous venons de parler.

La facilité avec laquelle le fer reçoit la vertu magnétique par le contact et le voisinage d’un aimant, l’attraction mutuelle des pôles opposés, et la répulsion des pôles semblables, sont confirmées par les phénomènes suivants.

Lorsqu’on donne à un morceau de fer la forme d’une fourche, et qu’on applique une des branches à un aimant, le fer devient magnétique, et son extrémité inférieure peut soutenir une petite masse de fer; mais si on approche de la seconde branche de la fourche un aimant dont le pôle soit opposé à celui du premier aimant, le morceau de fer soumis à deux forces qui tendent à se détruire, recevant deux vertus contraires, ou, pour mieux dire, n’en recevant aucune, perd son magnétisme, et laisse échapper le poids qu’il soutenoit.

Si l’on suspend un petit fil de fer mou, long de quelques pouces, et qu’on approche un aimant de son extrémité inférieure, en présentant aussi à cette extrémité un morceau de fer, ce morceau acquerra une vertu opposée à celle du pôle voisin de l’aimant; il repoussera l’extrémité inférieure du fil de fer qui aura obtenu une force semblable à celle qu’il possédera, et attirera l’extrémité supérieure qui jouira d’une vertu contraire.

Lorsqu’on suspend un poids à une lame d’acier
mince, aimantée, et horizontale, et que l'on place au dessus de cette lame une seconde lame aimantée, de même force, d'égale grandeur, couchée sur la première, la recouvrant en entier, et présentant un pôle opposé au pôle qui soutient le poids, ce poids n'est plus retenu. Si la lame supérieure jouit d'une plus grande force que l'inférieure, le poids tombera avant qu'elle ne touche la seconde lame : mais en continuant de l'approcher, elle agira par son excès de force sur les nouveaux poids qu'on lui présentera, et les soutiendra, malgré l'action contraire de la lame inférieure.

Lorsqu'on suspend un poids à un aimant, et que l'on approche un second aimant au dessus de ce poids, la force du premier aimant est augmentée dans le cas où les pôles contraires sont opposés, et se trouve diminué quand les pôles semblables sont les plus voisins. Les mêmes effets arriveront, et le poids sera également soumis à deux forces agissant dans la même direction, si l'on remplace le second aimant par un morceau de fer auquel la proximité du premier aimant communiquera une vertu magnétique opposée à celle du pôle le plus voisin. Ceci avait été observé précédemment par M. de Réaumur, qui a reconnu qu'un aimant enlevoit une masse de fer placée sur une enclume de fer avec plus de facilité que lorsqu'elle étoit placée sur une autre matière.

Les faits que nous venons de rapporter nous démontrent pourquoi un aimant acquiert une nouvelle vertu en soutenant du fer qu'il aimante par son voisinage, et pourquoi, si on lui enlève des poids qu'on
était parvenu à lui faire porter en le chargeant graduellement, il refuse de les soutenir lorsqu'on les lui rend tous à la fois.

L'expérience nous apprend, dit M. Épinus, que le fer exposé à un froid très âpre devient beaucoup plus dur et plus cassant : ainsi, lorsqu'on aimante une barre de fer, le degré de la force qu'elle acquiert dépend, selon lui, en grande partie, du degré de froid auquel elle est exposée, en sorte que la même barre aimantée de la même manière n'acquiert pas dans l'été la même vertu que dans l'hiver, surtout pendant un froid très rigoureux. Néanmoins ce savant physicien convient qu'il faudroit confirmer ce fait par des expériences exactes et réitérées. Au reste, on peut assurer qu'en général la grande chaleur et le grand froid diminuent la vertu magnétique des aimants et des fers aimantés, en modifiant leur état, et en les rendant par là plus ou moins susceptibles de l'action de l'électricité générale.

On peut voir, dans l'Essai sur le fluide électrique de feu M. le comte de Tressan, une expérience du docteur Knight, que j'ai cru devoir rapporter ici, parce qu'elle est relative à l'aimantation du fer, et d'ailleurs parce qu'elle peut servir à rendre raison de plusieurs autres expériences surprenantes en apparence, et dont la cause a été pendant long-temps cachée aux physiciens. Au reste, elle s'explique très aisément par la répulsion des pôles semblables et l'attraction des pôles de différent nom.

1. M. de Rozières, que nous avons déjà cité, l'a prouvé par plusieurs expériences.
2. L'expérience, dit M. de Tressan, la plus singulière à faire sur les
ARTICLE V.

De la direction de l’aimant, et de sa déclinaison.

Après avoir considéré les effets de la force attractive de l’aimant, considérons les phénomènes de ses aimants artificiels du docteur Knight est celle dont il m’envoya les détails de Londres en 1748, avec l’appareil nécessaire pour la répéter. Non seulement M. Knight avait déjà trouvé alors le secret de donner un magnétisme puissant à des barres de quinze pouces de longueur faites d’un acier parfaitement dur, telles que celles qui sont aujourd’hui connues, mais il avait inventé une composition, dont il s’est réservé le secret, avec laquelle il forme de petites pierres d’une matière noire (en apparence pierreuse et métallique). Celles qu’il m’a envoyées ont un pouce de long, huit lignes de large, et deux bonnes lignes d’épaisseur : il y a joint plusieurs petites balles de la même composition ; les petites balles que j’ai ont, l’une cinq, l’autre quatre, et les autres trois lignes de diamètre. Il nomme ces petites sphères terrella.

Je fus moins surpris de trouver un fort magnétisme dans les petits carrés longs, que je ne fus de le trouver égal dans les petites terrella, dont les pôles sont bien décidés et bien fixes, ces petites sphères s’attirant et se repoussant vivement, selon les pôles qu’elles se présentent.

Je préparai donc (selon l’instruction que j’avais reçue de M. Knight) une glace bien polie et posée bien horizontalement ; je disposai en rond cinq de ces terrella, et je plaçai au milieu un de ces aimants factices de la même matière, lequel je pouvais tourner facilement sur son centre ; je vis sur-le-champ toutes les terrella s’agiter et se retourner pour présenter à l’aimant factice la polarité correspondante à la sienne : les plus légères furent plusieurs fois attirées jusqu’au contact, et ce ne fut qu’avec peine que je parvins à les placer à la distance proportionnelle, en raison composée de leurs sphères d’activité respective. Alors, en tournant doucement l’aimant factice sur son centre, j’eus la satisfaction de voir toutes ces terrella tourner sur elles-mêmes par une rotation correspondante à celle de cet aimant ; et cette rotation étoit pareille à celle qu’éprouve une roue de rencontre lorsqu’elle est mue par
forces directives. Un aimant, ou, ce qui revient au même, une aiguille aimantée, se dirige toujours vers les pôles du globe, soit directement, soit obliquement, en déclinant à l'est ou à l'ouest, selon les temps et les lieux ; car ce n'est que pendant un assez petit intervalle de temps, comme de quelques années, que dans un même lieu, la direction de l'aimant paraît être constante ; et en tout temps il n'y a que quelques endroits sur la terre où l'aiguille se dirige droit aux pôles du globe, tandis que partout ailleurs elle décline de plus ou moins de degrés à l'est ou à l'ouest, suivant les différentes positions de ces mêmes lieux.

Les grandes ou petites aiguilles aimantées sur un aimant fort ou foible, contre les pôles ou contre les autres parties de la surface de ces aimants, prennent toutes la même direction, en marquant également la même déclinaison dans chaque lieu particulier.

Les François sont, de l'aveu même des étrangers, les premiers en Europe qui aient fait usage de cette connaissance de la direction de l'aimant pour se conduire dans leurs navigations. Dès le commencement

une autre roue à dents ; de sorte que lorsque je tournois mon aimant de la droite à la gauche, la rotation des terrella étoit de la gauche à la droite ; et l'inverse arrivait toujours lorsque je tournois mon aimant de l'autre sens.

1. Par le témoignage des auteurs chinois, dont MM. Le Roux et de Guignes ont fait l'extrait, il paroit certain que la propriété qu'a le fer aimanté de se diriger vers les pôles a été très anciennement connue des Chinois. La forme de ces premières boussoles étoit une figure d'homme qui tournoit sur un pivot, et dont le bras droit montrait toujours le midi. Le temps de cette invention, suivant certaines chroniques de la Chine, est de 1115 ans avant l'ère chrétienne, et 2700 selon d'autres. Voyez l'Extrait des annales de la Chine, par MM. Le Roux et de Guignes. Mais, malgré l'ancienneté de cette découverte, il
du douzième siècle, ils naviguoient sur la Méditerranée, guidés par l'aiguille aimantée, qu'ils appeloient la marinette; et il est à présumer que, dans ce temps, la direction de l'aimant étoit constante; car cette aiguille n'auroit pu guider des navigateurs qui ne connaisoient pas ses variations; et ce n'est que dans les siècles suivants qu'on a observé sa déclinaison dans les différents lieux de la terre, et même aujourd'hui l'art nécessaire à la précision de ces observations n'est pas encore à sa perfection. La marinette n'étoit qu'une boussole imparfaite; et notre compas de mer, qui est la boussole perfectionnée, n'est pas encore un guide aussi fidèle qu'il seroit à désirer: nous ne pouvons même guère espérer de le rendre plus sûr, malgré les observations très multipliées des navigateurs dans toutes les parties du monde, parce que la déclinaison de l'aimant change selon les lieux et les temps. Il faut donc chercher à reconnoître ces changements de direction en différents temps, pendant un aussi grand nombre d'années que les observations peuvent nous l'indiquer, et ensuite les comparer aux changements de cette déclinaison dans un même temps en différents lieux.

En recueillant le petit nombre d'observations faites à Paris dans les seizième et dix-septième siècles, il paroit qu'en l'année 1580 l'aiguille aimantée déclinoit de onze degrés trente minutes vers l'est, qu'en 1618 elle déclinoit de huit degrés, et qu'en l'année 1665 elle se dirigoit droit au pôle. L'aiguille aimantée s'est donc successivement approchée du pôle de onze degrés; ne paroit pas que les Chinois en aient jamais tiré l'avantage de faire de longs voyages.
grés trente minutes pendant cette suite de quatre-vingt-trois ans : mais elle n’est demeurée qu’un an ou deux stationnaire dans cette direction, où la déclinaison est nulle ; après quoi l’aiguille s’est de plus en plus éloignée de la direction au pôle, toujours en déclinant vers l’ouest : de sorte qu’en 1785, le 50 mai, la déclinaison étoit à Paris de vingt-deux degrés. De même on peut voir, par les observations faites à Londres, qu’avant l’année 1657 l’aiguille déclinoit à l’est; et après cette année 1657, où sa direction tendoit droit au pôle, elle a décliné successivement vers l’ouest.

1. Dans l’année 1670 la déclinaison étoit de 1 degré 50 minutes vers l’ouest, et l’aiguille a continué de décliner dans les années suivantes, toujours vers l’ouest; en 1680 elle déclinoit de 2 degr. 40 min.; en 1681, de 2 degr. 50 min.; en 1685, de 3 degr. 50 min.; en 1694, de 4 degr. 10 min.; en 1695, de 4 degr. 10 min.; en 1686, de 4 degr. 50 min.; en 1692, de 5 degr. 50 min.; en 1695, de 6 degr. 20 min.; en 1695, de 6 degr. 48 min.; en 1696, de 7 degr. 8 min.; en 1698, de 7 degr. 40 min.; en 1699, de 8 degr. 10 min.; en 1700, de 8 degr. 12 min.; en 1701, de 8 degr. 25 min.; en 1702, de 8 degr. 48 min.; en 1705, de 9 degr. 6 min.; en 1704, de 9 degr. 20 min.; en 1705, de 9 degr. 55 min.; en 1706, de 9 degr. 48 min.; en 1707, de 10 degr. 10 min.; en 1708, de 10 degr. 15 min.; en 1709, de 11 degr. 15 min.; en 1714, de 11 degr. 50 min.; en 1717, de 12 degr. 20 min.; en 1719, de 12 degr. 50 min.; en 1720, en 1721, en 1722, en 1723, en 1724, de 15 degr.; en 1725, de 15 degr. 15 min.; en 1727 et en 1728, de 14 degrés. (Musschenbroeck, Dissertatio de magnetc, p. 152.) En 1729, de 14 degr. 10 min.; en 1750, de 14 degr. 25 min.; en 1751, de 14 degr. 45 min.; en 1752 et 1755, de 15 degr. 15 min.; en 1754 et 1740, de 15 degr. 45 min.; en 1744, en 1745, en 1746, en 1747, et en 1749, de 16 degr. 50 min. (Encyclopédie, article Aiguille aimantée.) En 1755, de 17 degr. 50 min.; en 1756, de 17 degr. 45 min.; en 1757 et 1758, de 18 degr.; en 1759, de 18 degr. 10 min.; en 1760, de 18 degr. 20 min.; en 1765, de 18 degr. 55 min. 20 sec.; en 1767, de 19 degr. 16 min.; en 1768, de 19 degr. 25 min. (Connaissance des temps, années 1769, 1770, 1771, et 1772.)

2. L’aiguille aimantée n’avoir aucune déclinaison à Vienne en Au-
La déclinaison s'est donc trouvée nulle à Londres six ans plus tôt qu'à Paris, et Londres est plus occidental que Paris de deux degrés vingt-cinq minutes. Le méridien magnétique coïncidait avec le méridien de Londres en 1657, et avec le méridien de Paris en 1663. Il a donc subi, pendant ce temps, un changement d'occident en orient, par un mouvement de deux degrés vingt-six minutes en six ans, et l'on pourroit croire que ce mouvement seroit relatif à l'intervalle des méridiens terrestres, si d'autres observations ne s'opposoient pas à cette supposition. Le méridien magnétique de la ligne sans déclinaison passoit par Vienne en Autriche dès l'année 1658 : cette ligne aurait donc dû arriver à Paris plus tôt qu'à Londres, et cependant c'est à Londres qu'elle est arrivée six ans plus tôt qu'à Paris. Cela nous démontre que le mouvement de cette ligne n'est point du tout relatif aux intervalles des méridiens terrestres.

Il ne me paraît donc pas possible de déterminer la marche de ce mouvement de déclinaison, parce que sa progression est plus qu'irrégulière, et n'est point du tout proportionnelle au temps, non plus qu'à l'espace : elle est tantôt plus prompte, tantôt
plus lente, et quelquefois nulle, l’aiguille demeurant stationnaire, et même devenant rétrograde pendant quelques années, et reprenant ensuite un mouvement de déclinaison dans le même sens progressif. M. Cassini, l’un de nos plus savants astronomes, a été informé qu’à Québec la déclinaison n’a varié que de trente minutes pendant trente-sept ans consécutifs : c’est peut-être le seul exemple d’une station aussi longue. Mais on a observé plusieurs stations moins longues en différents lieux : par exemple, à Paris l’aiguille a marqué la même déclinaison pendant cinq années, depuis 1720 jusqu’en 1724, et aujourd’hui ce mouvement progressif est fort ralenti ; car, pendant seize années, la déclinaison n’a augmenté que de deux degrés, ce qui ne fait que sept minutes et demie par an, puisqu’en 1769 la déclinaison étoit de vingt degrés, et qu’en 1785 elle s’est trouvée de vingt-deux. Je ne crois donc pas que l’on puisse, par des observations ultérieures, et même très multipliées, déterminer quelque chose de précis sur le mouvement progressif ou rétrograde de l’aiguille aimantée, parce que ce mouvement n’est point l’effet d’une cause constante, ou d’une loi de la nature, mais dépend de circonstances accidentelles, particulières à certains lieux, et variables selon les temps. Je crois pouvoir assurer, comme je l’ai dit, que le défrichement des terres, et la découverte ou l’enfouissement des mines de fer, soit par les tremblements de terre, les effets des foudres souterraines et de l’é-

1. Ce fait est confirmé par les observations de M. Cotte, qui prouvent que la déclinaison moyenne de l’aiguille aimantée, en 1786, n’a été à Laon que de 21 degrés 51 minutes.
ruption des volcans, soit par l'incendie des forêts, et même par le travail des hommes, doivent changer la position des pôles magnétiques sur le globe, et fléchir en même temps la direction de l'aimant.

En 1785, la déclinaison de l'aiguille aimantée été de vingt-deux degrés; en 1784, elle n'a été que de vingt-un degrés vingt-une minutes; en 1785, de vingt-un degrés onze minutes; en 1782, de vingt-un degrés trente-six minutes.

Et en consultant les observations qui ont été faites par l'un de nos plus habiles physiciens, M. Cotte, nous voyons qu'en prenant le terme moyen entre les résultats des observations faites à Montmorency près Paris, tous les jours de l'année, le matin, à midi, et le soir, c'est-à-dire le terme moyen de 1095 observations, la déclinaison en l'année 1781 a été de vingt degrés seize minutes cinquante-huit secondes; et les différences entre les observations ont été si petites, que M. Cotte a cru pouvoir les regarder comme nulles.

En 1780, cette même déclinaison moyenne a été de dix-neuf degrés cinquante-cinq minutes vingt-sept secondes; en 1779, de dix-neuf degrés quarante-une minutes huit secondes; en 1778, de dix-neuf degrés tente-deux minutes cinquante-cinq secondes; en 1777, de dix-neuf degrés trente-cinq minutes cinquante-cinq secondes; en 1776, de dix-neuf degrés trente-trois minutes trente-une secondes; en 1775, de dix-neuf degrés quarante-une minutes quarante-une secondes.

1. En 1780, la déclinaison moyenne, prise d'après 6022 observations, a été de 19 degrés 55 minutes 27 sec. Mais les variations de cette déclinaison ont été bien plus considérables qu'en 1781: car la plus
Ces observations sont les plus exactes qui aient jamais été faites; celles des années précédentes, quoique bonnes, n'offrent pas le même degré d'exactitude;

grande déclinaison s'est trouvée de 20 degrés 15 minutes le 29 juillet; et la moindre, de 18 degrés 40 minutes le même jour. La différence a donc été de 1 degré 55 minutes; et cette variation, qui s'est faite le même jour, c'est-à-dire en douze ou quinze heures, est plus considérable que le progrès de la déclinaison pendant quinze ans, puisqu'en 1764 la déclinaison étoit de 18 degrés 55 minutes 20 secondes, c'est-à-dire de 15 min. 20 secondes plus grande que celle du 29 juillet, à l'heure qu'elle s'est trouvée de 18 degrés 40 minutes..... En 1779, la déclinaison moyenne pendant l'année a été de 19 degrés 41 minutes 8 secondes. La plus grande déclinaison s'est trouvée de 20 degrés le 6 décembre, à la suite d'une aurore boréale, et la plus petite de 19 degrés 15 minutes en janvier et février; la différence a donc été de 45 minutes. L'observateur remarque que l'augmentation moyenne a augmenté de 8 à 9 minutes depuis l'année précédente, et que la variation diurne s'est soutenue avec beaucoup de régularité, excepté dans certains jours où elle a été troublée, le plus souvent à l'approche ou à la suite d'une aurore boréale. Au reste, ajoute-t-il, l'aiguille aimantée tend à se rapprocher du nord, chaque jour, depuis trois ou quatre heures du soir jusqu'à cinq ou six heures du matin, et elle tend à s'en éloigner depuis cinq ou six heures du matin jusqu'à trois ou quatre heures du soir..... En 1778, la déclinaison moyenne, pendant l'année, a été de 19 degrés 52 minutes 55 secondes. La plus grande déclinaison a été de 20 degrés le 29 juin; on avait observé une aurore boréale la veille à onze heures du soir: la plus petite déclinaison a été de 18 degrés 54 min. le 26 janvier; ainsi la différence a été de 1 degré 6 minutes. En 1777, la déclinaison moyenne, pendant l'année, a été de 19 degrés 55 minutes. La plus grande déclinaison s'est trouvée de 19 degrés 58 minutes le 19 juin, et la plus petite de 18 degrés 45 minutes au mois de décembre: ainsi la différence a été de 1 degré 15 minutes..... En 1776, la déclinaison moyenne, pendant l'année, a été de 19 degrés 55 minutes 51 secondes. La plus grande déclinaison s'est trouvée de 20 degrés en mars, avril, et mai; la plus petite déclinaison en janvier et février, de 19 degrés: ainsi la différence a été de 1 degré..... En 1775, la déclinaison moyenne, pendant l'année, a été de 19 degrés 41 minutes 41 secondes; la plus grande déclinaison s'est trouvée de 20 degrés 10 minutes le 15 avril, et la plus petite de 19
et à mesure qu'on remonte dans le passé, les observations deviennent plus rares et moins précises, parce qu'elles n'ont été faites qu'une fois ou deux par mois, et même par année.

Comparant donc ces observations entre elles, on voit que, pendant les onze années depuis 1775 jusqu'en 1785, l'augmentation de la déclinaison vers l'ouest n'a été que de deux degrés dix-huit minutes dix-neuf secondes ; ce qui n'excède pas de beaucoup la variation de l'aiguille dans un seul jour, qui quelquefois est de plus d'un degré et demi. On ne peut donc pas en conclure affirmativement que la progression actuelle de l'aiguille vers l'ouest soit considérable. Il se pourrait, au contraire, que l'aiguille fût presque stationnaire depuis quelques années, d'autant qu'en 1774 la déclinaison moyenne a été de dix-neuf degrés cinquante-cinq minutes trente-cinq secondes ; en 1775, de vingt degrés une minute quinze secondes ; en 1772, de dix-neuf degrés cinquante-cinq minutes vingt-cinq secondes : et cette augmentation de la déclinaison vers l'ouest a été encore plus petite dans les années précédentes, puisqu'en 1771 cette déclinaison a été de dix-neuf degrés cinquante-cinq minutes, comme en 1772 ; qu'en 1770 elle a été de dix-neuf degrés cinquante-cinq minutes, et en 1769 de vingt degrés.

Le mouvement en déclinaison vers l'ouest parait donc s'être très ralenti depuis près de vingt ans. Cela semble indiquer que ce mouvement pourra, dans quelque temps, devenir rétrograde, ou du moins que degrés le 15 décembre : ainsi la différence a été de 1 degré 10 minutes...
sa progression ne s'étendra qu'à quelques degrés de plus; car je ne pense pas qu'on puisse supposer ici une révolution entière, c'est-à-dire de trois cent soixante degrés dans le même sens. Il n'y a aucun fondement à cette supposition, quoique plusieurs physiciens l'aient admise, et que même ils en aient calculé la durée d'après les observations qu'ils avaient pu recueillir; et si nous voulions supposer et calculer de même, d'après les observations rapportées ci-dessus, nous trouverions que la durée de cette révolution seroit de 1996 ans et quelques mois, puisqu'en 122 années, c'est-à-dire depuis 1665 à 1785, la progression a été de vingt-deux degrés : mais ne seroit-il pas nécessaire de supposer encore que le mouvement de cette progression fût assez uniforme pour faire dans l'avenir à peu près autant de chemin que dans le passé? ce qui est plus qu'incertain, et même peu vraisemblable par plusieurs raisons, toutes mieux fondées que ces fausses suppositions.

Car si nous remontons au delà de l'année 1665, et que nous prenions pour premier terme de la progression de ce mouvement l'année 1580, dans laquelle la déclinaison étoit de onze degrés trente minutes vers l'est, le progrès de ce mouvement en deux cent cinq ans, c'est-à-dire depuis 1580 jusqu'à l'année 1785 comprise, a été en totalité de trente degrés trente minutes; ce qui donneroit environ 2201 ans pour la révolution totale de trois cent soixante degrés. Mais ce mouvement n'est pas, à beaucoup près, uniforme, puisque depuis 1580 jusqu'en 1665, c'est-à-dire en quatre-vingt-trois ans, l'aiguille a parcouru onze degrés trente minutes par son mouvement de l'est au
nord, tandis que dans les cinquante-deux années suivantes, c'est-à-dire depuis 1665 jusqu'en 1715, elle a parcouru du nord à l'ouest un espace égal de onze degrés trente minutes, et que dans les cinquante années suivantes, c'est-à-dire depuis 1715 jusqu'en 1765, le progrès de cette déclinaison n'a été que d'environ sept degrés et demi; car, dans cette année 1765, l'aiguille aimantée déclinoit à Paris de dix-huit degrés cinquante-cinq minutes vingt secondes; et nous voyons que depuis cette année 1765 jusqu'en 1785, c'est-à-dire en vingt ans, la déclinaison n'a augmenté que de deux degrés; différence si petite, en comparaison des précédentes, qu'on peut présumer avec fondement que le mouvement total de cette déclinaison à l'ouest est borné, quant à présent, à un arc de vingt-deux ou vingt-trois degrés 1.

La supposition que le mouvement suit la même marche de l'est au nord que du nord à l'ouest n'est nullement appuyée par les faits; car si l'on consulte les observations faites à Paris depuis l'année 1610 jusqu'en 1665, c'est-à-dire dans les cinquante-trois ans qui ont précédé l'année où la déclinaison étoit nulle, l'aiguille n'a parcouru que huit degrés de l'est au nord, tandis que dans un espace de huit degrés de l'est au nord, c'est-à-dire dans les cinquante-neuf années suivantes, depuis 1665 jusqu'en 1712, elle a parcouru treize de-

1. Dans le Supplément aux Voyages de Thévenot, publié en 1681, page 59, il est dit que la déclinaison de l'aiguille aimantée avait été observée de cinq degrés vers l'est en 1669. Si l'on connaissait le lieu où cette observation a été faite, elle pourrait démontrer que la déclinaison est quelquefois rétrograde, et par conséquent que son mouvement ne produit pas une révolution entière.
grés vers l'ouest. On ne peut donc pas supposer que le mouvement de la déclinaison suive la même marche en s'approchant qu'en s'éloignant du nord, puisque ces observations démontrent le contraire.

Tout cela prouve seulement que ce mouvement ne suit aucune règle, et qu'il n'est pas l'effet d'une cause constante. Il paroit donc certain que cette variation ne dépend que de causes accidentelles ou locales, et spécialement de la découverte ou de l'ensouissement des mines et grandes masses ferrugineuses, et de leur aimantation plus ou moins prompte et plus ou moins étendue, selon qu'elles sont plus ou moins découvertes et exposées à l'action du magnétisme général. Ces changements, comme nous l'avons dit, peuvent être produits par les tremblements de terre, l'éruption des volcans, ou les coups des foudres souterraines, l'incendie des forêts, et même par le travail des hommes sur les mines de fer. Il doit dès lors se former de nouveaux pôles magnétiques, plus faibles ou plus puissants que les anciens, dont on peut aussi supposer l'anéantissement par les mêmes causes. Ce mouvement ne peut donc pas être considéré comme un grand balancement qui se ferait par des oscillations régulières, mais comme un mouvement qui s'opère par secousses plus ou moins sensibles, selon le changement plus ou moins prompt des pôles magnétiques; changement qui ne peut provenir que de la découverte et de l'aimantation des mines ferrugineuses, lesquelles seules peuvent former des pôles.

Si nous considérons les mouvements particuliers de l'aiguille aimantée, nous verrons qu'elle est presque continuellement agitée par de petites vibrations,
TRAITÉ DE L'AIMANT
dont l'étendue est au moins aussi variable que la durée.
M. Graham en Angleterre, et M. Cotte à Paris, ont donné, dans leurs tables d'observations, toutes les alternatives, toutes les vicissitudes de ce mouvement de trépidation, chaque mois, chaque jour, et chaque heure. Mais nous devons remarquer que les résultats de ces observations doivent être modifiés. Ces physiciens ne se sont servis que de boussoles dans lesquelles l'aiguille portoit sur un pivot, dont le frottement influoit plus que toute autre cause sur la variation; car M. Coulomb, capitaine au corps royal du génie, de l'Académie des Sciences, ayant imaginé une suspension dans laquelle l'aiguille est sans frottement, M. le comte de Cassini, de l'Académie des Sciences, et arrière-petit-fils du grand astronome Cassini, a reconnu, par une suite d'expériences, que cette variation diurne ne s'étendait tout au plus qu'à quinze ou seize minutes, et souvent beaucoup moins, tandis qu'avec les boussoles à pivot cette variation diurne est quelquefois de plus d'un degré et demi: mais comme jusqu'à présent les navigateurs ne se sont servis que de boussoles à pivot, on ne peut compter qu'à un degré et demi, et même à deux degrés près, sur la certitude de leurs observations.

En consultant les observations faites par les voyageurs récents, on voit qu'il y a plusieurs points sur le globe où la déclinaison est actuellement nulle ou moindre d'un degré, soit à l'est, soit à l'ouest, tant dans l'hémisphère boréal que dans l'hémisphère austral; et la suite de ces points où la déclinaison est nulle, ou presque nulle, forme des lignes et même des bandes qui se prolongent dans les deux hémisphères.
sphères. Ces mêmes observations nous indiquent aussi que les endroits où la déclinaison est la plus grande, dans l’un et l’autre hémisphère, se trouvent aux plus hautes latitudes, et beaucoup plus près des pôles que de l’équateur.

Les causes qui font varier la déclinaison, et la transportent pour ainsi dire avec le temps, de l’est à l’ouest, ou de l’ouest à l’est du méridien terrestre, ne dépendent donc que de circonstances accidentelles et locales, sur lesquelles néanmoins nous pouvons asseoir un jugement en rapprochant les différents faits ci-devant indiqués.

Nous avons dit qu’en l’année 1580 l’aiguille déclinait à Paris de onze degrés trente minutes vers l’est : or nous remarquerons que c’est depuis cette année 1580 que la déclinaison paroît avoir commencé de quitter cette direction vers l’est, pour se porter vers le nord et ensuite vers l’ouest ; car en l’année 1610 l’aiguille, ainsi que nous l’avons déjà remarqué, ne déclinait plus que de huit degrés vers l’est, en 1640 elle ne déclinait plus que de trois degrés, et en 1665 elle se dirigeait droit au pôle. Enfin, depuis cette époque, elle n’a pas cessé de se porter vers l’ouest. J’observerai donc que la période de ce progrès dans l’ouest, auquel il faut joindre encore la période du retour ou du rappel de la déclinaison de l’est au nord, puisque ce mouvement s’est opéré dans le même sens, j’observerai, dis-je, que ces périodes de temps semblent correspondre à l’époque du défrichement et de la dénudation de la terre dans l’Amérique septentrionale, et aux progrès de l’établissement des colonies dans cette partie du Nouveau-Monde. En effet, l’ou-
verture du sein de cette nouvelle terre par la culture, les incendies des forêts dans de vastes étendues, et l'exploitation des mines de fer par les Européens dans ce continent, dont les habitants sauvages n'avaient jamais connu ni cherché ce métal, n'ont-elles pas dû produire un nouveau pôle magnétique, et déterminer vers cette partie occidentale du globe la direction de l'aimant, qui précédemment n'éprouvoit pas cette attraction, et, au lieu d'obéir à deux forces, étoit uniquement déterminée par le courant électrique qui va de l'équateur aux pôles de la terre?

J'ai remarqué ci-devant que la déclinaison s'est trouvée constante à Québec durant une période de trente-sept ans ; ce qui semble prouver l'action constante d'un nouveau pôle magnétique dans les régions septentrionales de l'Amérique. Enfin le ralentissement actuel du progrès de la déclinaison dans l'ouest offre encore un rapport suivi avec l'état de cette terre du Nouveau-Monde, où le principal produit de la dénudation du sol et de l'exploitation des mines de fer paraît actuellement être à peu près aussi complet que dans les régions septentrionales de l'ancien continent.

On peut donc assurer que cette déclinaison de l'aimant, dans divers lieux et selon les différents temps, ne dépend que du gisement des grandes masses ferrugineuses dans chaque région, et de l'aimantation plus ou moins prompte de ces mêmes masses par des causes accidentelles ou des circonstances locales, telles que le travail de l'homme, l'incendie des forêts, l'éruption des volcans, et même les coups que frappe l'électricité souterraine.
sur de grands espaces, causes qui peuvent toutes donner également le magnétisme aux matières ferrugineuses; et ce qui en complète les preuves c'est qu'après les tremblements de terre on a vu souvent l'aiguille aimantée soumise à de grandes irrégularités dans ses variations.

Au reste, quelque irrégulière que soit la variation de l'aiguille aimantée dans sa direction, il me paraît néanmoins que l'on peut en fixer les limites, et même placer entre elles un grand nombre de points intermédiaires qui, comme ces limites mêmes, seront constants et presque fixes pour un certain nombre d'années, parce que, le progrès de ce mouvement de déclinaison ne se faisant actuellement que très lentement, on peut le regarder comme constant pour le prochain avenir d'un petit nombre d'années; et c'est pour arriver à cette détermination, ou du moins pour en approcher autant qu'il est possible, que j'ai réuni toutes les observations que j'ai pu recueillir dans les voyages et navigations faits depuis vingt ans, et dont je placerai d'avance les principaux résultats dans l'article suivant.

ARTICLE VI.

De l'inclinaison de l'aimant.

La direction de l'aimant, ou de l'aiguille aimantée, n'est pas l'effet d'un mouvement simple, mais d'un mouvement composé qui suit la courbure du globe de l'équateur aux pôles. Si l'on pose un aimant sur du mercure, dans une situation horizontale,
et sous le méridien magnétique du lieu, il s'inclinera de manière que le pôle austral de cet aimant s'élevera au dessus, et que le pôle boréal s'abaissera au dessous de la ligne horizontale dans notre hémisphère boréal; et le contraire arrive dans l'hémisphère austral. Cet effet est encore plus aisé à mesurer au moyen d'une aiguille aimantée placée dans un plan vertical : la boussole horizontale indique la direction avec ses déclinaisons, et la boussole verticale démontre l'inclinaison de l'aiguille. Cette inclinaison change souvent plus que la déclinaison, suivant les lieux; mais elle est plus constante pour les temps; et l'on a même observé que la différence de hauteur, comme du sommet d'une montagne à sa vallée, ne change rien à cette inclinaison. M. le chevalier de Lamanon m'a écrit qu'étant sur le Pic-de-Ténériffe, à 1,900 toises au dessus du niveau de la mer, il avait observé que l'inclinaison de l'aiguille était la même qu'à Sainte-Croix; ce qui semble prouver que les émanations du globe qui produisent l'électricité et le magnétisme s'élèvent à une très grande hauteur dans les climats chauds. Au reste, l'inclinaison et la déclinaison sont sujettes à des trépidations presque continues de jour en jour, d'heure en heure, et pour ainsi dire de moment en moment.

Les aiguilles des boussoles verticales doivent être faites et placées de manière que leur centre de gravité coïncide avec leur centre de mouvement, au lieu que dans les boussoles horizontales le centre du mouvement de l'aiguille est un peu plus élevé que son centre de gravité.

Lorsqu'on commence à mettre en mouvement
cette aiguille placée verticalement, elle se meut par des oscillations qu'on a voulu comparer à celle du pendule de la gravitation : mais les effets qu'ils présentent sont très différents; car la direction de cette aiguille, dans son inclinaison, varie selon les différents lieux, au lieu que celle du pendule est constante dans tous les lieux de la terre, puisqu'elle est toujours perpendiculaire à la surface du globe.

Nous avons dit que les particules de la limaille de fer sont autant de petites aiguilles qui prennent des pôles par le contact de l'aimant ; ces aiguilles se dressent perpendiculairement sur les deux pôles de l'aimant ; mais la position de ces particules aimantées devient d'autant plus oblique qu'elles sont plus éloignées de ces mêmes pôles, et jusqu'à l'équateur de l'aimant, où il ne leur reste qu'une attraction sans inclinaison. Cet équateur est le point de partage entre les deux directions et inclinaisons en sens contraire ; et nous devons observer que cette ligne de séparation des deux courants magnétiques ne se trouve pas précisément à la même distance des deux pôles dans les aimants non plus que dans le globe terrestre, et qu'elle est toujours à une moindre distance du pôle le plus foible. Les particules de limaille s'attachent horizontalement sur cette partie de l'équateur des aimants, et leur inclinaison ne se manifeste bien sensiblement qu'à quelque distance de cette partie équatoriale ; la limaille commence alors à s'incliner sensiblement vers l'un et l'autre pôle en deçà et au delà de cet équateur : son inclinaison vers le pôle austral est donc un contre-sens de la première, qui tend au pôle boréal de l'aimant, et cette limaille se
dresse de même perpendiculairement sur le pôle austral comme sur le pôle boréal. Ces phénomènes sont constants dans tous les aimants, ou fers aimantés; et comme le globe terrestre possède en grand les mêmes puissances que l’aimant nous présente en petit, l’aiguille doit être perpendiculaire par une inclinaison de 90 degrés sur les pôles magnétiques du globe: ainsi les lieux où l’inclinaison de l’aiguille sera de 90 degrés seront en effet les vrais pôles magnétiques sur la terre.

Nous n’avons rien négligé pour nous procurer toutes les observations qui ont été faites jusqu’ici sur la déclinaison et l’inclinaison de l’aiguille aimantée 1. Nous croyons que personne avant nous n’en avait recueilli un aussi grand nombre: nous les avons comparées avec soin, et nous avons reconnu que c’est aux environs de l’équateur que l’inclinaison est presque toujours nulle; que l’équateur magnétique est au dessus de l’équateur terrestre dans la partie de la mer des Indes située vers le quatre-vingt-dix-septième degré de longitude 2, et qu’il paroit, au contraire, au dessous de la ligne dans la portion de la mer Pacifique qui correspond au cent quatre-vingt-dix-septième degré: on peut donc conjecturer que le pôle magnétique est éloigné vers l’est du pôle de la terre, relativement aux mers des Indes et Pacificque, et par

conséquent il doit être situé dans les terres les plus septentrionales de l'Amérique, ainsi que nous l'avons déjà dit.

Dans la mer Atlantique, l'espace où l'aiguille a été observée sans déclinaison se prolonge jusqu'au cinquante-huitième degré de latitude austral; et à l'égard de son étendue vers le nord, on le peut suivre jusqu'au trente-cinquième degré, ou environ, de latitude, ce qui lui donneroit en tout quatre-vingt-treize degrés de longueur, si l'on avait fait jusqu'à présent assez d'observations pour que nous fussions assurés qu'il n'est interrompu par aucun endroit où l'aiguille décline de plus de deux degrés vers l'est ou vers l'ouest. Cet espace ou cette bande sans déclinaison peut surtout être interrompu dans le voisinage des continents et des îles : car on ne peut douter que la proximité des terres n'influe beaucoup sur la direction de l'aiguille. Cette déviation dépend des masses ferrugineuses qui peuvent se trouver à la surface de ces terres, et qui, agissant sur le magnétisme général, comme autant de pôles magnétiques particuliers, doivent fléchir son cours, et en changer plus ou moins la direction : et si le voisinage de certaines côtes a paru, au contraire, repousser l'aiguille aimantée, la nouvelle direction de l'aiguille n'a point été, dans ces cas particuliers, l'effet d'une répulsion qui n'a été qu'apparente ; mais elle a été produite par le magné-

1. Je dois observer ici que j'ai regardé comme nulles toutes les déclinaisons qui ne s'étendoient pas à deux degrés au dessous de zéro, parce que les variations diurnes, et surtout les accidents des aurores boréales et des tempêtes, font souvent changer la direction de l'aiguille de plus de deux degrés.
tisme général, ou par l’attraction particulière de quelques autres terres plus ou moins éloignées, et dont l’action aura cessé d’être troublée dans le voisinage de certaines côtes dépourvues de mines de fer ou d’aimant. Lors donc qu’à l’approche des terres l’aiguille aimantée éprouve constamment des changements très marqués dans sa déclinaison, on peut en conclure l’existence ou le défaut de mines de fer ou d’aimant dans ces mêmes terres, suivant qu’elles attirent ou repoussent l’aiguille aimantée.

En général, les bandes sans déclinaison se trouvent toujours plus près des côtes orientales des grands continents que des côtes occidentales : celle qui a été observée dans la mer Atlantique est, dans tous ses points, beaucoup plus voisine des côtes orientales de l’Amérique que des côtes occidentales de l’Afrique et de l’Europe; et celle qui traverse la mer de l’Inde et la grande mer Pacifique est placée à une assez petite distance à l’est des côtes de l’Asie.

La bande sans déclinaison de la mer des Indes, et qui se prolonge dans la mer Pacifique boréale, paroit s’étendre depuis environ le cinquante-neuvième degré de latitude sud jusqu’au quarantième degré de latitude nord.

Il est important d’observer que sous la latitude boréale de dix-neuf degrés, ainsi que sous la latitude australe de cinquante-trois degrés, la bande sans déclinaison de la mer Atlantique, et celle de la mer des Indes, sont éloignées l’une de l’autre d’environ cent cinquante-sept degrés, c’est-à-dire de près de la moitié de la circonférence du globe. Il est également remarquable qu’à partir de quelques degrés de l’équa-
teur, on n’a observé, dans la mer Pacifique boréale, aucune déclinaison vers l’ouest qu’on ne puisse rapporter aux variations instantanées et irrégulières de l’aiguille : ceci joint à toutes les directions des déclinaisons, tant de la mer Atlantique que de la mer des Indes, confirme l’existence d’un pôle magnétique très puissant dans le nord des terres de l’Amérique ; et ce qui confirme encore cette vérité, c’est que la plus grande déclinaison orientale dans la mer Pacifique boréale a été observée, par le capitaine Cook, de trente-six degrés dix-neuf minutes aux environs de soixante-dix degrés de latitude nord et du cent quatre-vingt-quinzième de longitude, c’est-à-dire à deux degrés, ou à peu près, au nord des terres de l’Amérique les plus voisines de l’Asie. D’un autre côté, M. le chevalier de Langle a trouvé une déclinaison vers l’ouest de quarante-cinq degrés, dans un point de la mer Atlantique situé très près des côtes orientales et boréales de l’Amérique. C’est donc dans ces terres septentrionales du nouveau continent que toutes les directions des déclinaisons se réunissent et coïncident au pôle magnétique, dont l’existence nous paraît démontrée par tous les phénomènes.

La déclinaison n’éprouve que de petites vicissitudes dans les basses latitudes, surtout dans la grande mer de l’Inde, où l’on n’observe jamais qu’un petit nombre de degrés de déclinaisons dans le voisinage de l’équateur, tandis que, dans les plus hautes latitudes de l’hémisphère austral, il paraît que la déclinaison de l’aiguille varie beaucoup de l’est à l’ouest, ou de l’ouest à l’est, dans un très petit espace.
La ligne sans déclinaison qui passe entre Malaca, Bornéo, le détroit de la Sonde, se replie vers l’est, et son inflexion semble être produite par les terres de la Nouvelle-Hollande.

Il y a dans la mer Pacifique une troisième bande sans déclinaison, qui paroît s’étendre depuis le septième degré de latitude nord jusqu’au cinquante-cinquième degré de latitude sud. Cette bande traverse l’équateur vers le deux cent trente-deuxième degré de longitude ; mais, à vingt-quatre degrés de latitude australe, elle paroît fléchir vers les côtes occidentales de l’Amérique méridionale ; ce qui paroît être l’effet des masses ferrugineuses que l’on doit trouver dans ces contrées si souvent brûlées par les feux des volcans, et agitées par les coups de la foudre souterraine.

La déclinaison la plus considérable qui ait été trouvée dans l’hémisphère austral est celle de quarante-trois degrés six minutes, observée par Cook en février 1775, sous le soixantième degré de latitude et le quatre-vingt-douzième degré trente-cinq minutes de longitude, loin de toute terre connue ; et la plus forte déclinaison qu’on ait trouvée dans l’hémisphère boréal, et, en même temps, la plus grande de toutes celles qui ont été remarquées dans les derniers temps, est celle de quarante-cinq degrés, dont nous avons déjà parlé, et qui a été observée par M. le chevalier de Langle vers le soixante-deuxième degré de latitude et le deux cents quatre-vingt-dix-sept ou deux cent quatre-vingt-dix-huitième de longitude, entre le Groenland et la terre de Labrador ; elles sont toutes
les deux vers l'ouest, et toutes les deux ont eu lieu dans des endroits éloignés de l'équateur d'environ soixante degrés.

Tels sont les principaux faits, tant pour la déclinaison que pour l'inclinaison, qu'offre ce qu'on a reconnu de l'état actuel des forces magnétiques, qui s'étendent de l'équateur aux pôles; et si nous voulons tirer quelques résultats du petit nombre d'observations plus anciennes, nous trouverons que, depuis 1700, l'inclinaison de l'aiguille aimantée a varié en différents endroits : mais tout ce que l'on peut conclure de ces observations, qui sont en petit nombre, c'est que les changements de la déclinaison et de l'inclinaison ont été inégaux et irréguliers dans les divers points des deux hémisphères.

Et, pour ne considérer d'abord que les variations de la déclinaison, la plus grande irrégularité des changements qu'elle a éprouvés sur les différents points du globe suffit pour empêcher d'admettre l'hypothèse de Halley, qui supposait dans l'intérieur de la terre un grand noyau magnétique doué d'une sorte de mouvement de rotation, indépendant de celui du globe, et qui, par sa déclinaison, produirait celle des aimants placés à la surface de la terre. M. Épinus, qui d'abord paroissait tenté d'adopter l'opinion de Halley, a vu lui-même qu'elle ne pouvait pas s'accorder avec l'irrégularité des changements de la déclinaison magnétique : au lieu du mouvement régulier d'une sorte de grand aimant imaginé par Halley, il a proposé d'admettre des changements irréguliers et locaux dans le noyau de la terre. Mais, indépendamment de l'impossibilité d'assigner les causes de ces changements
intérieurs, ils ne pourroient agir sur la déclinaison des aiguilles qu’autant que les portions du noyau gagneroient ou perdroient la vertu magnétique; et nous avons vu que les masses ferrugineuses ne pouvoient s’aimanter naturellement que très près de la surface du globe, et par les influences de l’atmosphère.

Depuis 1580, la déclinaison de l’aiguille a varié dans les divers endroits de la surface du globe, d’une manière très inégale: elle s’est portée vers l’est avec des vitesses très différentes, non seulement selon les temps, mais encore selon les lieux; et ceci est d’autant plus important à observer, que ses mouvements ont toujours été très irréguliers, et que nous ne faisons ici aucune attention aux petites causes locales qui ont pu la déranger. Ces causes, dont les effets ne sont pas constants, mais passagers, peuvent être de même nature que les causes plus générales du changement de déclinaison d’un grand nombre de degrés, jusqu’à la faire aller en diminuant lorsqu’elle devroit s’accroître, et peuvent même tout à coup la faire changer de l’est à l’ouest, ou de l’ouest à l’est. Par exemple, dans l’année 1618, la déclinaison étoit orientale de quinze degrés dans l’île de Candie, tandis qu’elle étoit nulle à Malte et dans le détroit de Gibraltar, et qu’elle étoit de six degrés vers l’ouest à Palerme et à Alexandrie; ce que l’on ne peut attribuer qu’à des causes particulières, et à ces effets passagers que nous venons d’indiquer.

La bande sans déclinaison qui se trouve actuellement dans la mer Atlantique gisoit auparavant dans notre continent: en 1594, elle passoit à Narva en Finlande; elle étoit en même temps bien plus avancée
du côté de l’est dans les régions plus voisines de l’équateur, et, par conséquent, il y a près de deux cents ans qu’elle étoit inclinée du côté de l’ouest, relativement à l’équateur terrestre, puisqu’elle n’a passé qu’en 1600 à Constantinople, qui est à peu près sous le même méridien que Narva. Cette bande sans déclinaison est parvenue, en s’avançant vers l’ouest, jusqu’au deux cent quatre-vingt-deuxième degré de longitude, et à la latitude de trente-cinq degrés, où elle se trouve actuellement.

En 1616, la déclinaison fut trouvée de cinquante-sept degrés à soixante-dix-huit degrés de latitude boréale, et deux cent quatre-vingts de longitude. C’est la plus grande déclinaison qu’on ait observée; elle étoit vers l’ouest, ainsi que les deux fortes déclinaisons dont nous devons la connaissance à M. le chevalier de Langle et au capitaine Cook; elle a eu également lieu sous une très haute latitude, et elle a été reconnue dans un endroit peu éloigné de celui où M. de Langle a trouvé la déclinaison de quarante-cinq degrés, la plus grande de toutes celles qui ont été observées dans les derniers temps. Néanmoins, dans la même année 1616, la bande sans déclinaison qui traverse l’Europe, et qui s’avance toujours vers l’occident, n’étoit pas encore parvenue au vingt-unième degré de longitude; et dans des points situés à l’ouest de cette bande, comme, par exemple, à Paris, à Rome, etc., l’aiguille déclinoit vers l’est; et cela provient de ce que les régions septentrionales de l’Amérique n’avoient pas encore éprouvé toutes les révolutions qui y ont établi le pôle magnétique que l’on doit y supposer à présent.
Quoi qu'il en soit, nous ne pouvons pas douter qu'il n'y ait actuellement un pôle magnétique dans cette région du nord de l'Amérique, puisque la déclinaison vers l'ouest est plus grande en Angleterre qu'en France, plus grande en France qu'en Allemagne, et toujours moindre à mesure qu'on s'éloigne de l'Amérique, en s'avançant vers l'orient.

Dans l'hémisphère austral l'aiguille d'inclinaison, au rapport du voyageur Noël, se tenoit perpendiculaire au trente-cinquième ou trente-sixième degré de latitude, et cette perpendiculaire de l'aiguille se soutenait dans une longue étendue sous différentes longitudes, depuis la mer de la Nouvelle-Hollande jusqu'à sept ou huit cents milles du cap de Bonne-Espérance. Cette observation s'accorde avec le fait rapporté par Abel Tasman, dans son voyage, en 1642 : ce voyageur dit avoir observé que l'aiguille de ses boussoles horizontales ne se dirigeait plus vers aucun point fixe dans la partie de la mer voisine, à l'occident, de la terre de Diémen; et cela doit arriver en effet lorsqu'on se trouve sur un pôle magnétique. En comptant donc sur cette observation du voyageur Noël, on est en droit d'en conclure qu'un des pôles magnétiques de l'hémisphère austral était situé, dans ce temps, sous la latitude de trente-cinq ou trente-six degrés,

1. Le capitaine Cook dit que l'inclinaison de l'aiguille fut de 64 degrés 56 minutes les trois différentes fois qu'il relâcha à la Nouvelle-Zélande, dans une baie située par 41 degrés 5 minutes 56 secondes de latitude, et 172 degrés 0 minute 7 secondes de longitude. Il me paraît que l'on peut compter sur cette observation de Cook, avec d'autant plus de raison qu'elle a été répétée, comme l'on voit par son récit, jusqu'à trois fois différentes dans le même lieu, en différentes années.
et que, quoiqu'il y eût une assez grande étendue en longitude où l'aiguille n'avait point de direction constante, on doit supposer sur cette ligne un espace qui servoit de centre à ce pôle, et dans lequel, comme sur les parties polaires de la pierre d'aimant, la force magnétique étoit la plus concentrée; et ce centre étoit probablement l'endroit où Tasman a vu que l'aiguille de ses boussoles horizontales ne pouvoit se fixer.

Le pôle magnétique qui se trouve dans le nord de l'Amérique n'est pas le seul qui soit dans notre hémisphère; la savant et ingénieux Halley en comptoit quatre sur le globe entier, et en plaçoit deux dans l'hémisphère boréal et deux dans l'hémisphère austral. Nous croyons devoir en compter également deux dans chaque hémisphère, ainsi que nous l'avons déjà dit; puisqu'on y a reconnu trois lignes ou bandes sur lesquelles l'aiguille se dirige droit au pôle terrestre, sans aucune déviation.

De la même manière que les pôles d'un aimant ne sont pas des points mathématiques, et qu'ils occupent quelques lignes d'étendue superficielle, les pôles magnétiques du globe terrestre occupent un assez grand espace; et en comptant sur le globe quatre pôles magnétiques, il doit se trouver un certain nombre de régions dans lesquelles l'inclinaison de l'aiguille sera très grande, et de plus de quatre-vingts degrés.

Quoique le globe terrestre ait en grand les mêmes propriétés que l'aimant nous offre en petit, ces propriétés ne se présentent pas aussi évidemment ni par des effets aussi constants et aussi réguliers sur le globe que sur la pierre d'aimant. Cette différence entre les effets du magnétisme général du globe, et du magné-
tisme particulier de l'aimant, peut provenir de plus d'une cause. Premièrement, de la figure sphéroïde de la terre : on a éprouvé, en aimantant de petits globes de fer, qu'il est difficile de leur donner des pôles bien déterminés ; et c'est probablement en raison de sa sphéricité que les pôles magnétiques ne sont pas aussi distincts sur le globe terrestre qu'ils le sont sur des aimants non sphériques. Secondement, la position de ces pôles magnétiques, qui sont plus ou moins voisins des vrais pôles de la terre, et plus ou moins éloignés de l'équateur, doit influer puissamment sur la déclinaison dans chaque lieu particulier, suivant sa situation plus ou moins distante de ces mêmes pôles magnétiques, dont la position n'est point encore assez déterminée.

Le magnétisme du globe, dont les effets viennent de nous paraître si variés, et même si singuliers, n'est donc pas le produit d'une force particulière, mais une modification d'une force générale, qui est celle de l'électricité, dont la cause doit être attribuée aux émanations de la chaleur propre du globe, lesquelles, partant de l'équateur et des régions adjacentes, se portent, en se courbant et se plongeant sur les régions polaires où elles tombent, dans des directions d'autant plus approchantes de la perpendiculaire, que la chaleur est moindre, et que ces émanations se trouvent, dans les régions froides, plus complètement éteintes ou supprimées. Or cette augmentation d'inclinaison, à mesure que l'on s'avance vers les pôles de la terre, représente parfaitement l'incidence de plus en plus approchante de la perpendiculaire des rayons ou faisceaux d'un fluide animé par les émanations de la cha-
leur du globe, lesquelles, par les lois de l’équilibre, doivent se porter en convergeant et s’abaissant de l’équateur vers les deux pôles.

La force particulière des pôles magnétiques, dans l’action qu’ils exercent sur l’inclinaison, est assez d’accord avec la force générale qui détermine cette inclinaison vers les pôles terrestres, puisque l’une et l’autre de ces forces agissent presque également dans une direction qui tend plus ou moins à la perpendiculaire. Dans la déclinaison, au contraire, l’action des pôles magnétiques se croise, et forme un angle avec la direction générale et commune de tout le système du magnétisme vers les pôles de la terre. Les éléments de l’inclinaison sont donc plus simples que ceux de la déclinaison, puisque celle-ci résulte de la combinaison de deux forces agissantes dans les deux directions différentes, tandis que l’inclinaison dépend principalement d’une cause simple, dans une direction inclinée et relative à la courbure du globe. C’est par cette raison que l’inclinaison paraît être et est en effet plus régulière, plus suivie et plus constante que la déclinaison dans toutes les parties de la terre.

On peut donc espérer, comme je l’ai dit, qu’en multipliant les observations sur l’inclinaison, et déterminant par ce moyen la position des lieux, soit sur terre, soit sur mer, l’art de la navigation tirera du recueil de ces observations autant et plus d’utilité que de tous les moyens astronomiques ou mécaniques employés, jusqu’à ce jour, à la recherche des longitudes.
ARRANGEMENT DES MINÉRAUX

EN TABLE MÉTHODIQUE.

RÉDIGÉE D'APRÈS LA CONNAISSANCE DE LEURS PROPRIÉTÉS NATURELLES.

Cette table présente les minéraux, non seulement avec leurs vrais caractères, qui sont leurs propriétés naturelles, mais encore avec l'ordre successif de leur génésisie ou filiation, selon qu'ils ont été produits par l'action du feu, de l'air, et de l'eau, sur l'élément de la terre.

Ces propriétés naturelles sont :

1° La densité ou pesanteur spécifique de chaque substance, qu'on peut toujours reconnaître avec précision par la balance hydrostatique;

2° La dureté, dont la connaissance n'est pas aussi précise, parce que l'effet du choc ou du frottement ne peut se mesurer aussi exactement que celui de la pesanteur par la balance, mais qu'on peut néanmoins estimer et comparer par des essais assez faciles;

3° L'homogénéité ou simplicité de substance dans chaque matière, qui se reconnaît avec toute précision dans les corps transparents, par la simple ou double réfraction que la lumière souffre en les traversant, et
que l'on peut connoître, quoique moins exactement, dans les corps opaques, en les soumettant à l'action des acides ou du feu;

4^e La fusibilité et la résistance plus ou moins grande des différentes matières à l'action du feu avant de se calciner, se fondre ou se vitrifier;

5^e La combustibilité ou destruction des différentes substances par l'action du feu libre, c'est-à-dire par la combinaison de l'air et du feu.

Ces cinq propriétés sont les plus essentielles de toute matière, et leur connaissance doit être la base de tout système minéralogique et de tout arrangement méthodique : aussi cette connaissance, autant que j'ai pu l'acquérir, m'a servi de guide dans la composition de cet ouvrage sur les minéraux ; et c'est d'après ces mêmes propriétés, qui constituent la nature de chaque substance, que j'ai rédigé la table suivante.
TABLE MÉTHODIQUE DES MINÉRAUX.

PREMIER ORDRE.
MATIÈRES VITREUSES.

PREMIÈRE CLASSE.
Matières vitreuses produites par le feu primitif.

<table>
<thead>
<tr>
<th>MATIÈRES.</th>
<th>SORTES.</th>
<th>VARIÉTÉS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verres primitifs.</td>
<td>Quartz.—Feld-spath.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>— Schorl. —Jaspe.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>— Mica.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roches de 1, 2, 5, et 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>substances vitreuses.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pierre de Laponie.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Porphyre.</td>
<td>rouge, — brun.</td>
</tr>
<tr>
<td></td>
<td>Granite.</td>
<td>rouge, — gris. — à gros grains. — à petits grains.</td>
</tr>
<tr>
<td>Substances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>composées.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEUXIÈME CLASSE.
Matières vitreuses extraites des premières, et produites par l’intermédiaire de l’eau.

PREMIÈRE DIVISION.
Produits du quartz.

<table>
<thead>
<tr>
<th>MATIÈRES.</th>
<th>SORTES.</th>
<th>VARIÉTÉS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitreuses produites</td>
<td>Quartz de seconde formation.</td>
<td>blancâtre, — rougeâtre, — gras, — feuilleté, — grenu.</td>
</tr>
<tr>
<td>par l’intermédiaire</td>
<td>Cristal de roche.</td>
<td>blanc, — nuageux, — rougeâtre, — bleuâtre, — jaune, — vert, — brun noir, — opaque, — irisé.</td>
</tr>
<tr>
<td>de l’eau, demi-</td>
<td>Améthyste.</td>
<td>violette, — pourprée.</td>
</tr>
<tr>
<td>Transparentes.</td>
<td>Chrysolite.</td>
<td>d’un jaune mêlé de plus ou moins de vert.</td>
</tr>
<tr>
<td></td>
<td>Aigue-marine.</td>
<td>d’un vert bleuâtre, ou d’un bleu verdître.</td>
</tr>
</tbody>
</table>
TABLE MÉTHODIQUE

SECONDE DIVISION.

Produits du feld-spath seul, et du quartz mêlé de feld-spath.

<table>
<thead>
<tr>
<th>MATIÈRES.</th>
<th>SORTES.</th>
<th>VARIÉTÉS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demi-transparentes.</td>
<td>Saphir d'eau.</td>
<td>plus ou moins bleuâtre et à demi chatoyant.</td>
</tr>
<tr>
<td></td>
<td>Pierre de Russie, ou de Labrador.</td>
<td>chatoyante, avec reflets verdâtres et bleuâtres.</td>
</tr>
<tr>
<td></td>
<td>OEil-de-chat.</td>
<td>gris.—jaune.—mordoré.</td>
</tr>
<tr>
<td></td>
<td>OEil-de-poisson.</td>
<td>blanc intense.—blanc bleuâtre.</td>
</tr>
<tr>
<td></td>
<td>OEil-de-loup.</td>
<td>brun rougeâtre.—brun verdâtre.</td>
</tr>
<tr>
<td>Toutes chatoyantes.</td>
<td>Opale.</td>
<td>à fond blanc.—à fond bleuâtre.—à fond noir.—sans paillettes.—semée de paillettes brillantes rouges, bleues, et d'autres couleurs. rouge, plus ou moins semée de paillettes brillantes de différentes couleurs.</td>
</tr>
<tr>
<td>Opaques.</td>
<td>Aventurine.</td>
<td></td>
</tr>
</tbody>
</table>

TROISIÈME DIVISION.

Produit du schorl seul, et du quartz et feld-spath mêlés de schorl.

<table>
<thead>
<tr>
<th>MATIÈRES.</th>
<th>SORTES.</th>
<th>VARIÉTÉS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transparentes.</td>
<td>Émeraude.</td>
<td>du Péron.—vert pur plus ou moins clair.—du Brésil.—vert plus ou moins foncé.</td>
</tr>
<tr>
<td></td>
<td>Saphir du Brésil.</td>
<td>bleu.—blanc.</td>
</tr>
<tr>
<td></td>
<td>Béryl.</td>
<td>vert bleuâtre.—bleu verdâtre.</td>
</tr>
<tr>
<td></td>
<td>Périodot.</td>
<td>plus ou moins dense.—vert plus ou moins mêlé de jaune.</td>
</tr>
<tr>
<td></td>
<td>OEil-de-chat noir ou noirâtre.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rubis et Topazes du Brésil.</td>
<td>plus ou moins rougeâtres.—plus ou moins jaune foncé.</td>
</tr>
<tr>
<td></td>
<td>Topaze de Saxe.</td>
<td>jaune doré.—jaune clair.—blanche.</td>
</tr>
<tr>
<td></td>
<td>Grenat.</td>
<td>rouge violet, syrien.</td>
</tr>
<tr>
<td></td>
<td>Hyacinthe.</td>
<td>rouge couleur de feu, escarboucle.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rouge brun demi-transparent ou opaque.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>jaune mêlé de plus ou moins de rouge.</td>
</tr>
</tbody>
</table>
Demi-transparentes.

<table>
<thead>
<tr>
<th>MATIÈRES.</th>
<th>TOURMALINE.</th>
<th>ORANGÉE.—NOIRÂTRE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPAQUES.</td>
<td>PIERRE-DE-CROIX.</td>
<td>BRUNE.—NOIRÂTRE.</td>
</tr>
</tbody>
</table>

QUATRIÈME DIVISION.

Stalactites vitreuses non cristallisées, produites par le mélange du quartz et des autres verres primitifs.

<table>
<thead>
<tr>
<th>Demi-transparentes.</th>
<th>Agate.</th>
<th>BLANCHE.—LAITEUSE.—VEINÉE.—PONCTUÉE.—HERBORISÉE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORNALINE.</td>
<td>SARDOINE.</td>
<td>ORANGÉE.—VEINÉE.—HERBORISÉE.</td>
</tr>
<tr>
<td>PRASE.</td>
<td>BLANCHE.—BLEUÂTRE.—Rouge plus ou moins foncé.</td>
<td></td>
</tr>
<tr>
<td>CALCÉDOINE.</td>
<td>BLANCHE.—Rougeâtre.—TOUJOURS LAITEUSE.</td>
<td></td>
</tr>
</tbody>
</table>

Transparentes imbibées d'eau

<table>
<thead>
<tr>
<th>Pierre hydrophane.</th>
<th>Grise.—Bleuâtre.—Rougeâtre.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PÉTRO-SILEX.</td>
<td>BLANC.—Rougeâtre.—DE TOUTES COULEURS.—VEINÉ.—TACHÉ.</td>
</tr>
</tbody>
</table>

Demi-transparentes aux parties minces

<table>
<thead>
<tr>
<th>ONYX.</th>
<th>Veinés.—ŒILLES.—HERBORISÉS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAILLoux.</td>
<td>EN PLUS GROS OU PLUS PETITS CAILLoux.</td>
</tr>
<tr>
<td>Poudingues.</td>
<td>SANGUIN.—HÉLIOTROPE.—FLEURI.—UNIVERSEL.</td>
</tr>
<tr>
<td>Jaspes de seconde formation.</td>
<td></td>
</tr>
</tbody>
</table>

Opaques.

<table>
<thead>
<tr>
<th>JADE.</th>
<th>BLANCHE.—VERT.—OLIVÂTRE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERPENTINE.</td>
<td>TACHÉE DE TOUTES COULEURS.</td>
</tr>
<tr>
<td>PIERRE OLLAIRE.</td>
<td>VEINÉE.—FIBREUSE.—GRENNE.</td>
</tr>
<tr>
<td></td>
<td>BLANCHE.—VERDÂTRE.—SEMÉE DE POINTS TALQUEUX.</td>
</tr>
<tr>
<td></td>
<td>VEINÉE.—FEUILLETÉE.</td>
</tr>
</tbody>
</table>
MATIÈRES.

<table>
<thead>
<tr>
<th>MATIÈRES.</th>
<th>SORTES.</th>
<th>VARIÉTÉS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opaques et demi-transparentes.</td>
<td>Molybdène.</td>
<td>pure. — noirâtre. — plombée. — mêlée de soufre. — plombagine.</td>
</tr>
<tr>
<td></td>
<td>Pierre-de-lard.</td>
<td>blanche. — rougeâtre.</td>
</tr>
<tr>
<td></td>
<td>Craie d'Espagne.</td>
<td>blanche. — grise.</td>
</tr>
<tr>
<td></td>
<td>Craie de Briançon.</td>
<td>blanche. — plus ou moins fine.</td>
</tr>
<tr>
<td></td>
<td>Cuir de montagne.</td>
<td>plus ou moins poreux et léger. — blanc. — jaunâtre. — en lames plates, ou feuilllets superposés.</td>
</tr>
<tr>
<td>Demi-transparentes.</td>
<td>Liége de montagne.</td>
<td>jaunâtre. — blanchâtre. — en cornets, ou feuilllets coutournés. — plus ou moins caverneux et léger.</td>
</tr>
</tbody>
</table>

TROISIÈME CLASSE.

Détriments des matières vitreuses.

<p>| Opaques. de seconde formation. | Porphyres de seconde formation. | vert taché de blanc. — de couleurs variées. |
| Granites de seconde formation. | rougeâtre à gros grains, et grandes lames talqueuses. — rougeâtre à petits grains; granitelle. |
| Opaques. | Grès. | blanche et pure. — bleuâtre. |</p>
<table>
<thead>
<tr>
<th>MATIÈRES.</th>
<th>SORTES.</th>
<th>VARIÉTÉS.</th>
</tr>
</thead>
</table>

QUATRIÈME CLASSE.

Concrétions vitreuses et argileuses formées par l’intermédiaire de l’eau.

Concrétions argileuses.

- **Ampélite.** plus ou moins noire. — à grain plus ou moins fin.
- **Smectis, ou argile à foulon.** blanc. — cendré. — verdâtre. — noirâtre.
- **Pierre à rasoir.** composée de couches alternatives de gris-blanc ou jaunâtre, et d’un gris-brun.

DEUXIÈME ORDRE.

MATIÈRES CALCAIRES TOUTES PRODUITES PAR L’INTERMÉDIAIRE DE L’EAU.

PREMIÈRE CLASSE.

Matières calcaires primitives avec leurs détrits et agrégats.

- **Substances calcaires primitives.** Les variétés de ces corps marins à substance coquillée sont innombrables.
 - Coquilles.
 - Madrépores.
 - Polypières de toutes sortes.
 - Graie.
 - Périers calcaires.
 - Marbres.

Détrits des matières calcaires primitives en grandes masses.

- plus ou moins blanche et plus ou moins dure.
 - de première formation : périers coquillées.
 - de seconde formation.
 - à grain plus ou moins fin.
 - blanches ou teintes de différentes couleurs.
 - de première formation.
 - marbres coquilleux. — brèches.
 - poudingues calcaires.
 - de seconde formation. — blancs.
Table méthodique

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Marbres.</td>
<td></td>
<td>de toutes couleurs uniformes ou variées.</td>
</tr>
<tr>
<td>Plâtre.</td>
<td></td>
<td>— mêlé de gris, de brun, et de noir. — herborisé.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>blanc. — grisâtre. — rougeâtre. — veiné.</td>
</tr>
</tbody>
</table>

Deuxième classe.

Stalactites et concrétions calcaires.

Produits des matières calcaires transparents.

- Spath calcaire.

Demi-transparents.

- Perles.
 - Tous les corps organisés incrustés, ou pétrifiés par la substance calcaire. — Goüilles pétrifiées. — Madrépores et autres corps marins incrustés et pétrifiés. — Bois et végétaux incrustés et pétrifiés.

Opaques mêlés de substance osseuse.

- Turquoises.
 - Tous les corps organisés incrustés, ou pétrifiés par la substance calcaire.

Incrustations et pétrifications calcaires.

- Zéolite.

Demi-transparents.

- Pierre à fusil.

Troisième classe.

Matières vitreuses mêlées d'une petite quantité de substances calcaires.

Plus vitreuses que calcaires et opaques.

Demi-transparents.

- Pierre à fusil.
DES MINÉRAUX.

<table>
<thead>
<tr>
<th>MATIÈRES.</th>
<th>SORTES.</th>
<th>VARIÉTÉS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transparentes</td>
<td>Spath fluor</td>
<td>rouge ; faux rubis.—jaune ; faux saphir.</td>
</tr>
<tr>
<td>Provenant des débris et du détriment des animaux et des végétaux.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PREMIÈRE CLASSE.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terreau.</td>
<td>Terre de jardin plus ou moins décomposée et plus ou moins mélangée.</td>
<td></td>
</tr>
<tr>
<td>Terre franche</td>
<td>Terreau décomposé, dont les parties sont plus ou moins atténuées.</td>
<td></td>
</tr>
<tr>
<td>Terre limoneuse</td>
<td>Terreau dont les parties sont encore plus décomposées.</td>
<td></td>
</tr>
<tr>
<td>Tourbe</td>
<td>Terreau plus ou moins bitumineux.</td>
<td></td>
</tr>
<tr>
<td>Mélangées de bitume. — Opques.</td>
<td>Matière végétale plus ou moins bitumineuse.</td>
<td></td>
</tr>
<tr>
<td>Charbon de terre</td>
<td>Plus ou moins pyriteuse.</td>
<td></td>
</tr>
<tr>
<td>DEUXIÈME CLASSE.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrétions et produits de la terre limoneuse.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spath pesant</td>
<td>— cristallisé. — mat. — de couleurs différentes.</td>
<td></td>
</tr>
<tr>
<td>Pyrite</td>
<td>Cubique lisse. — cubique strié à la surface. — globuleux et elliptique.</td>
<td></td>
</tr>
<tr>
<td>Opaques et combustibles.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE MÉTHODIQUE

<table>
<thead>
<tr>
<th>MATIÈRES.</th>
<th>SORTES.</th>
<th>VARIÉTÉS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opaques et combustibles.</td>
<td>Pyrite.</td>
<td>marcassite. — plus ou moins dure. — recevant le poli, et non efflorescente.</td>
</tr>
<tr>
<td></td>
<td>Soufre minéral.</td>
<td>plus ou moins décomposé.</td>
</tr>
<tr>
<td>Liquides et concrètes, transparentes, demi-transparentes, opaques et combustibles.</td>
<td>Bitumes.</td>
<td>naphte.— pétrole.— asphaltite.— succin.— ambré gris.</td>
</tr>
<tr>
<td></td>
<td>Diamant.</td>
<td>poix de montagne.— jayet.</td>
</tr>
<tr>
<td></td>
<td>Vraie topaze.</td>
<td>— noirâtre.</td>
</tr>
<tr>
<td></td>
<td>Vrai saphir.</td>
<td>rouge de feu. — rouge pourpre; spinelle. — rouge clair; batais. — rouge orangé; vermeille.</td>
</tr>
</tbody>
</table>

QUATRIÈME ORDRE.

MATIÈRES SALINES.

PREMIÈRE CLASSE.

Sels simples, Acide, Alcali, et Arsenic.

Produits de l'acide aérien sur lesmatières vitreuses.

Produits de l'acide aérien sur les substances animales et végétales.

MATIÈRES.

<table>
<thead>
<tr>
<th>Sortes.</th>
<th>Variétés.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autres produits de l'acide aérien sur les substances animales et végétales.</td>
<td>Acide des végétaux et des animaux. vinaigre.— acide du tartre. — acerbe.— acide des fourmis, etc.</td>
</tr>
<tr>
<td>Sel mélangé de parties métalliques.</td>
<td>Borax.</td>
</tr>
</tbody>
</table>

DEUXIÈME CLASSE.

Sels sublimés par le feu.

TROISIÈME CLASSE.

Sels composés par l'intermédiaire de l'eau.

- Composée de soufre et d'alcali. Foie de soufre. . . .
- Composées de l'acide vitriolique et d'alcali minéral. Sel de Glauber. . . .
CINQUIÈME ORDRE.

Matières métalliques.

PREMIÈRE CLASSE.

Matières métalliques produites par le feu primitif, ou métalliques simples et dans leur état de nature.

<table>
<thead>
<tr>
<th>Métaux</th>
<th>Or primitif en état de métal</th>
<th>Argent primitif en état de métal</th>
</tr>
</thead>
</table>

DEUXIÈME CLASSE.

Matières métalliques formées par l'intervalle de l'eau, ou concrétions et mines des métaux dans leur état d'agrégation et de minéralisation.

<table>
<thead>
<tr>
<th>Métaux</th>
<th>Or</th>
<th>en paillettes. — pyrites aurifères.</th>
</tr>
</thead>
</table>
TROISIÈME CLASSE.

Matières semi-métalliques, ou demi-métaux dans leur état de nature.

<table>
<thead>
<tr>
<th>Eau métallique</th>
<th>Mercure</th>
<th>Demi-métaux</th>
<th>Antimoine</th>
</tr>
</thead>
<tbody>
<tr>
<td>en cinabre. — en état coulant.</td>
<td>en minerais blancs et gris.</td>
<td>mines d’antimoine en plumes, souvent mêlée d’argent.</td>
<td></td>
</tr>
</tbody>
</table>
QUATRIÈME CLASSE.

Alliages métalliques faits par la nature.

Alliages métalliques tous mêlés de fer.

- Platine.
 - en grenaille toujours mêlée de sablon magnétique, et alliée de fer dans sa substance.
 - toujours plus ou moins mêlé de fer par un alliage intime.

- Cobalt.
 - mêlé de fer et de cobalt par un alliage intime.—grenu.—lamelleux.
 - grise.—noirâtre.—cristallisée.—non cristallisée.—toujours mêlée de fer par un alliage intime.

- Nickel.

- Manganèse.

SIXIÈME ET DERNIER ORDRE.

PRODUITS VOLCANIQUES.

Matières fondues par le feu des volcans.

- Laves.
 - plus ou moins compactes.
 - plus ou moins trouées.

- Basalte.
 - plus ou moins mêlé de fer, ainsi que les laves, et de différentes figures, depuis trois jusqu'à neuf faces dans sa longueur, articulé ou non dans son épaisseur.
 - noirâtre.—grisâtre.—verdâtre.
Matières fondues par le feu des volcans.

<table>
<thead>
<tr>
<th>MATIÈRES.</th>
<th>SORTES.</th>
<th>VARIÉTÉS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pierre de touche.</td>
<td>à grain plus ou moins fin.</td>
<td></td>
</tr>
</tbody>
</table>

Terre cuite par le feu des volcans.

| Matières volcaniques. | Tripoli. | à grains plus ou moins proéminents et plus ou moins rougeâtres. |

Détritments des matières volcaniques.

<table>
<thead>
<tr>
<th>Pouzzolane.</th>
<th>blanc. — jaunâtre. — noirâtre.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>plus ou moins sèche et rude au toucher. — grise. — rouge. — blanchâtre, etc.</td>
</tr>
</tbody>
</table>

FIN DU NEUVIÈME VOLUME

ET DE L'HISTOIRE DES MINÉRAUX.
<table>
<thead>
<tr>
<th>Tableau des articles</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stalactites calcaires</td>
<td>7</td>
</tr>
<tr>
<td>Du Spath appelé Cristal d'Islande</td>
<td>10</td>
</tr>
<tr>
<td>Perles</td>
<td>17</td>
</tr>
<tr>
<td>Turquoises</td>
<td>24</td>
</tr>
<tr>
<td>Corail</td>
<td>28</td>
</tr>
<tr>
<td>Pétrifications et Fossiles</td>
<td>33</td>
</tr>
<tr>
<td>Pierres vitreuses mélangees de matières calcaires</td>
<td>46</td>
</tr>
<tr>
<td>Zéolite</td>
<td>47</td>
</tr>
<tr>
<td>Lapis-Lazuli</td>
<td>51</td>
</tr>
<tr>
<td>Pierres à fusil</td>
<td>54</td>
</tr>
<tr>
<td>Pierre meulière</td>
<td>61</td>
</tr>
<tr>
<td>Spathes fluors</td>
<td>66</td>
</tr>
<tr>
<td>Stalactites de la terre végétale</td>
<td>75</td>
</tr>
<tr>
<td>Bols</td>
<td>78</td>
</tr>
<tr>
<td>Spathes pesants</td>
<td>81</td>
</tr>
<tr>
<td>Pierres précieuses</td>
<td>88</td>
</tr>
<tr>
<td>Diamant</td>
<td>101</td>
</tr>
<tr>
<td>Rubis et Vermeille</td>
<td>116</td>
</tr>
<tr>
<td>Topaze, Saphir, et Girasol</td>
<td>124</td>
</tr>
<tr>
<td>Concrétions métalliques</td>
<td>131</td>
</tr>
<tr>
<td>Concrétions du Fer. — Rouille de fer en Ocre</td>
<td>135</td>
</tr>
<tr>
<td>Terre d'Ombre</td>
<td>136</td>
</tr>
<tr>
<td>Éméril</td>
<td>137</td>
</tr>
<tr>
<td>Volfran</td>
<td>139</td>
</tr>
<tr>
<td>pyrites et marcassites</td>
<td>Page 140</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>mine de fer pyritiforme</td>
<td>142</td>
</tr>
<tr>
<td>mine de fer spathique</td>
<td>143</td>
</tr>
<tr>
<td>hématite</td>
<td>145</td>
</tr>
<tr>
<td>mines de fer spéculaire</td>
<td>146</td>
</tr>
<tr>
<td>mines de fer cristallisées par le feu</td>
<td>ibid.</td>
</tr>
<tr>
<td>sablon magnétique</td>
<td>148</td>
</tr>
<tr>
<td>concrétions de l'or</td>
<td>150</td>
</tr>
<tr>
<td>concrétions de l'argent</td>
<td>152</td>
</tr>
<tr>
<td>concrétions du cuivre</td>
<td>158</td>
</tr>
<tr>
<td>pierre arménienne</td>
<td>161</td>
</tr>
<tr>
<td>concrétions de l'étain</td>
<td>162</td>
</tr>
<tr>
<td>concrétions du plomb</td>
<td>164</td>
</tr>
<tr>
<td>concrétions du mercure</td>
<td>165</td>
</tr>
<tr>
<td>concrétions de l'antimoine</td>
<td>167</td>
</tr>
<tr>
<td>concrétions du bismuth</td>
<td>168</td>
</tr>
<tr>
<td>concrétions du zinc</td>
<td>169</td>
</tr>
<tr>
<td>concrétions de la platine</td>
<td>170</td>
</tr>
<tr>
<td>produits volcaniques</td>
<td>177</td>
</tr>
<tr>
<td>des basaltes, des laves, et des laitiers volcaniques</td>
<td>179</td>
</tr>
<tr>
<td>pierre de touche</td>
<td>188</td>
</tr>
<tr>
<td>pierre variolite</td>
<td>189</td>
</tr>
<tr>
<td>tripoli</td>
<td>192</td>
</tr>
<tr>
<td>pierre ponce</td>
<td>194</td>
</tr>
<tr>
<td>pouzzolane</td>
<td>198</td>
</tr>
</tbody>
</table>

Génésie des minéraux. 201

Traité de l'Aimant et de ses usages. 217

Art. I. Des forces de la nature en général, et en particulier de l'électricité et du magnétisme. ibid.

Art. II. De la nature et de la formation de l'Aimant. 278

Art. III. De l'attraction et de la répulsion de l'Aimant. 290

Art. IV. Divers procédés pour produire et compléter l'aimantation du fer. 314

Art. V. De la direction de l'Aimant, et de sa déclinaison. 524

Art. VI. De l'inclinaison de l'Aimant. 539

Fin de la table.